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A B S T R A C T

Despite technological and medical advances, the detection, interpretation, and treatment of cancer based
on imaging data continue to pose significant challenges. These include inter-observer variability, class
imbalance, dataset shifts, inter- and intra-tumour heterogeneity, malignancy determination, and treatment
effect uncertainty. Given the recent advancements in image synthesis, Generative Adversarial Networks (GANs),
and adversarial training, we assess the potential of these technologies to address a number of key challenges
of cancer imaging. We categorise these challenges into (a) data scarcity and imbalance, (b) data access
and privacy, (c) data annotation and segmentation, (d) cancer detection and diagnosis, and (e) tumour
profiling, treatment planning and monitoring. Based on our analysis of 164 publications that apply adversarial
training techniques in the context of cancer imaging, we highlight multiple underexplored solutions with
research potential. We further contribute the Synthesis Study Trustworthiness Test (SynTRUST ), a meta-analysis
framework for assessing the validation rigour of medical image synthesis studies. SynTRUST is based on 26
concrete measures of thoroughness, reproducibility, usefulness, scalability, and tenability. Based on SynTRUST,
we analyse 16 of the most promising cancer imaging challenge solutions and observe a high validation rigour
in general, but also several desirable improvements. With this work, we strive to bridge the gap between the
needs of the clinical cancer imaging community and the current and prospective research on data synthesis
and adversarial networks in the artificial intelligence community.
1. Introduction

1.1. The burden of cancer and early detection

The evident improvement in global cancer survival in the last
decades is arguably attributable not only to health care reforms, but
also to advances in clinical research (e.g., targeted therapy based on
molecular markers) and diagnostic imaging technology e.g whole-body
magnetic resonance imaging (MRI) (Messiou et al., 2019), and positron
emission tomography–computed tomography (PET-CT) (Arnold et al.,
2019). Nonetheless, cancers still figure among the leading causes of
morbidity and mortality worldwide (Ferlay et al., 2015), with an ap-
proximated 9.6 million cancer related deaths in 2018 (World Health Or-
ganization, 2018). The most frequent cases of cancer death worldwide
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in 2018 are lung (1.76 million), colorectal (0.86 million), stomach (0.78
million), liver (0.78 million), and breast (0.63 million) (World Health
Organization, 2018). These figures are prone to continue to increase in
consequence of the ageing and growth of the world population (Jemal
et al., 2011).

A large proportion of the global burden of cancer could be prevented
due to treatment and early detection (Jemal et al., 2011). For example,
an early detection can provide the possibility to treat a tumour before
it acquires critical combinations of genetic alterations (e.g., metastasis
with evasion of apoptosis Hanahan and Weinberg, 2000). Solid tumours
become detectable by medical imaging modalities only at an approxi-
mate size of 109 cells (≈ 1 cm3) after evolving from a single neoplastic
cell typically following a Gompertzian (Norton et al., 1976) growth pat-
tern (Frangioni, 2008).2 To detect and diagnose tumours, radiologists
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Fig. 1. Section organisation: Illustration of the structure of the present paper starting with paper sections on the left and going into detail towards the right culminating in a
selection of cancer imaging challenges and solutions. These solutions (a)–(p) are part of the solutions found in the surveyed GAN literature or are proposed extensions thereof, as
is further discussed in Section 4.
inspect, normally by visual assessment, medical imaging modalities
such as magnetic resonance imaging (MRI), computed tomography
(CT), ultrasound (US), X-ray mammography (MMG), PET (Frangioni,
2008; Itri et al., 2018; McCreadie and Oliver, 2009).

Medical imaging data evaluation is time demanding and therefore
costly in nature. In addition, volumes of new technologies (e.g., digital
breast tomosynthesis Swiecicki et al., 2021) become available and
studies generally show an extensive increase in analysable imaging
volumes (McDonald et al., 2015). Also, the diagnostic quality in radi-
ology varies and is very much dependent on the personal experience,
skills and invested time of the data examiner (Itri et al., 2018; Elmore
et al., 1994; Woo et al., 2020). Hence, to decrease cost and increase
quality, automated or semi-automated diagnostic tools can be used
to assist radiologists in the decision-making process. Such diagnos-
tic tools comprise traditional machine learning, but also recent deep
learning methods, which promise an immense potential for detection
performance improvement in radiology.

1.2. The promise of deep learning and the need for data

The rapid increase in graphics processing unit (GPU) processing
power has allowed training deep learning algorithms such as convolu-
tional neural networks (CNNs) (Fukushima, 1980; LeCun et al., 1989,
1998) on large image datasets achieving impressive results in Computer
Vision (CireAan et al., 2012; Krizhevsky et al., 2012), and Cancer
Imaging (Cireşan et al., 2013). In particular, the success of AlexNet
in the 2012 ImageNet challenge (Krizhevsky et al., 2012) triggered
an increased adoption of deep neural networks to a multitude of
problems in numerous fields and domains including medical imaging,
as reviewed in Shen et al. (2017), Zhou et al. (2021) and Litjens
et al. (2017). Despite the increased use of medical imaging in clinical
practice, the public availability of medical imaging data remains lim-
ited (McDonald et al., 2015). This represents a key impediment for the
training, research, and use of deep learning algorithms in radiology and
oncology. Clinical centres refrain from sharing such data for ethical,
legal, technical, and financial (e.g., costly annotation) reasons (Bi et al.,
2019).
2

Such cancer imaging data not only is necessary to train deep learn-
ing models, but also to provide them with sufficient learning possibility
to acquire robustness and generalisation capabilities. We define ro-
bustness as the property of a predictive model to remain accurate
despite of variations in the input data (e.g., noise levels, resolution,
contrast, etc.). We refer to a model’s generalisation capability as its
property of preserving predictive accuracy on new data from unseen
sites, hospitals, scanners, etc. Both of these properties are in particular
desirable in cancer imaging considering the frequent presence of biased
or unbalanced data with sparse or noisy labels.3 Both robustness and
generalisation are essential to demonstrate the trustworthiness of a
deep learning model for usage in a clinical setting, where every edge-
case needs to be detected and a false negative can potentially cost the
life of a patient.

1.3. Synthetic cancer imaging data

We hypothesise that the variety of data needed to train robust
and well-generalising deep learning models for cancer images can be
largely synthetically generated using Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014). The adversarial learning scheme in
GANs is based on a generator that generates synthetic (alias ‘fake’)
samples of a target distribution trying to fool a discriminator, which
classifies these samples as either real or fake. Various papers have
provided reviews of GANs in the medical imaging domain (Yi et al.,
2019; Kazeminia et al., 2020; Tschuchnig et al., 2020; Sorin et al.,
2020; Lan et al., 2020; Singh and Raza, 2020), but they focused on
general presentation of the main methods and possible applications.
In cancer imaging, however, there are specificities and challenges that
call for specific implementations and solutions based on GANs and the
adversarial learning scheme at large, including:

(i) the small size and complexity of cancerous lesions

3 Alongside tumour manifestation heterogeneity, and multi-centre, multi-
organ, multi-modality, multi-scanner, and multi-vendor data.
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Fig. 2. Overview of the most common organs and modalities targeted by the surveyed
cancer imaging publications. A respective histogram that shows the number of papers
per modality and per organ can be found in Fig. 15.

(ii) the high heterogeneity between tumours within as well as be-
tween patients and cancer types

(iii) the difficulty to annotate, delineate and label cancer imaging
studies at large scale

(iv) the high data imbalance in particular between healthy and
pathological subjects or between benign and malignant cases

(v) the difficulty to gather large consented datasets from highly
vulnerable patients undergoing demanding care plans

Hence, the present paper contributes a unique perspective and com-
prehensive analysis of adversarial networks attempting to address the
specific challenges in the cancer imaging domain. To the authors’ best
knowledge, this is the first survey that exclusively focuses on GANs and
adversarial training in cancer imaging. In this context, we define cancer
imaging as the entirety of approaches for research, diagnosis, and treat-
ment of cancer based on medical images. Our survey comprehensively
analyses cancer imaging GAN and adversarial training applications
focusing on radiology modalities. As presented in Fig. 2, we recognise
that non-radiology modalities are also widely used in cancer imaging.
For this reason, we do not restrict the scope of our survey to radiology,
but rather also analyse relevant publications in these other modalities
including histopathology and cytopathology (e.g., in Section 4.5), and
dermatology (e.g., in Sections 4.3 and 4.4).

Further, our survey uncovers and highlights promising research di-
rections for adversarial networks and image synthesis that can facilitate
the sustainable adoption of AI in clinical oncology and radiology.

1.4. Section organisation

The remainder of this paper is organised as follows. In Section 2,
we introduce the methodology of this review. Section 3 provides an
overview of GANs and highlights extensions of the adversarial learning
framework relevant to cancer imaging. Section 4 contains the main
3

contribution that encompasses the systematic review of challenges of
cancer imaging and potential solutions based on adversarial networks.
This organisation is depicted in more detail in Fig. 1.

The different challenges are categorised into groups in the Sections
4.1, 4.2, 4.3, 4.4, and 4.5. Each of the challenges categories contains
several specific cancer imaging challenges, which we introduce and
discuss in 4.1.1–4.5.3. The sections are organised in an independent
way allowing the reader to directly jump to a particular cancer imaging
category (4.1–4.5) of interest without requiring context from previous
sections. For each of the specific challenges, we survey and discuss
potential solutions, as depicted in Fig. 1(a)–(p).

The subsequent Section 5 contains our second core contribution,
which consists of the SynTRUST framework for systematic analysis
of trustworthiness criteria of image synthesis and adversarial training
publications in medical imaging. Based on this framework, we meta-
analyse a set of studies selected based on their strong performance and
promising methodology for solving a specific cancer imaging challenge.

After learning how and to what extent image synthesis and adversar-
ial training solutions have addressed cancer imaging challenges in the
past, we highlight and discuss prospective avenues of future research in
the Discussion Section 6 and point out unexploited potential of image
synthesis and adversarial networks in cancer imaging.

2. Review methodology

Our review comprises two comprehensive literature screening pro-
cesses. The first screening process surveyed the current challenges
in the field of cancer imaging with a focus on radiology imaging
modalities. After screening and gaining a deepened understanding of
AI-specific and general cancer imaging challenges, we grouped these
challenges for further analysis into the following five categories.

• Data scarcity and usability challenges (Section 4.1); discussing
dataset shifts, class imbalance, fairness, generalisation, domain
adaptation and the evaluation of synthetic data.

• Data access and privacy challenges (Section 4.2); comprising pa-
tient data sharing under privacy constraints, security risks, and
adversarial attacks.

• Data annotation and segmentation challenges (Section 4.3); dis-
cussing costly human annotation, high inter and intra-observer
variability, and the consistency of extracted quantitative features.

• Detection and diagnosis challenges (Section 4.4); analysing the chal-
lenges of high diagnostic error rates among radiologists, early
detection, and detection model robustness.

• Treatment and monitoring challenges (Section 4.5); examining chal-
lenges of high inter and intra-tumour heterogeneity, phenotype
to genotype mapping, treatment effect estimation and disease
progression.

The second screening process comprised first of a generic and sec-
ond a specific literature search to find all papers that apply adversarial
learning (i.e. GANs) to cancer imaging. In the generic literature search,
generic search queries such as ‘Cancer Imaging GAN’, ‘Tumour GANs’
or ‘Nodule Generative Adversarial Networks’ were used to recall a
high number of papers. The specific search focused on answering key
questions of interest to the aforesaid challenges such as ‘Carcinoma Do-
main Adaptation Adversarial’, ‘Skin Melanoma Detection GAN’, ‘Brain
Glioma Segmentation GAN’, or ‘Cancer Treatment Planning GAN’.

In Section 4, we map the papers that propose adversarial training
and GAN applications applied to cancer imaging (second screening)
to the surveyed cancer imaging challenges (first screening). The map-
ping of these GAN-related papers to challenge categories facilitates
analysing the extent to which existing solutions solve the current cancer
imaging challenges and helps to identify gaps and further potential
for adversarial networks in this field. The mapping is based on the
evaluation criteria used in the GAN-related papers and on the relevance
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of the reported results to the corresponding section. For example, if
a GAN generates synthetic data that is used to train and improve a
tumour detection model, then this paper is assigned to the detection
and diagnosis challenge Section 4.4. If a papers describes a GAN that
improves a segmentation model, then this paper is assigned to the
segmentation and annotation challenge Section 4.3, and so forth.

To gather the literature (e.g., first papers describing cancer imaging
challenges, second papers proposing GAN solutions), we have searched
in medical imaging, computer science and clinical conference proceed-
ings and journals, but also freely on the web using the search engines
Google, Google Scholar, and PubMed. After retrieving all papers with
a title related to the subject, their abstract was read to filter out non-
relevant papers. A full-text analysis was done for the remaining papers
to determine whether they were to be included into our manuscript.
We analysed the reference sections of the included papers to find addi-
tional relevant literature, which also underwent filtering and full-text
screening. Applying this screening process, we reviewed and included a
total of 164 GAN and adversarial training cancer imaging publications
comprising both peer-reviewed articles and conference papers, but also
relevant preprints from arXiv and bioRxiv.

Details about these 164 cancer imaging applications can be found
in Tables 2–6. The distribution of these publications across challenge
category, year, modality, and anatomy is outlined in Fig. 15.

The methodology for deriving and applying the SynTRUST meta-
nalysis framework, which assesses the validity and trustworthiness of
edical image synthesis studies, is provided in Section 5.

. GANs and extensions

.1. Introducing the theoretical underpinnings of GANs

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014)
re a type of generative model with a differentiable generator net-
ork (Goodfellow et al., 2016). GANs are formalised as a minimax

wo-player game, where the generator network (G) competes against
n adversary network called discriminator (D). As visualised in Fig. 3,
iven a random noise distribution 𝑧, G generates samples 𝑥 = 𝐺(𝑧; 𝜃(𝑔))
hat D classifies as either real (drawn from training data, i.e. 𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎)
r fake (drawn from G, i.e. 𝑥 ∼ 𝑝𝑔). 𝑥 is either sampled from 𝑝𝑑𝑎𝑡𝑎 or
rom 𝑝𝑔 with a probability of 50%. D outputs a value 𝑝 = 𝐷(𝑥; 𝜃(𝑑))
ndicating the probability that 𝑥 is a real training example rather
han one of G’s fake samples (Goodfellow et al., 2016). As defined
y Goodfellow et al. (2014), the task of the discriminator can be
haracterised as binary classification (CLF) of samples 𝑥. Hence, the
iscriminator can be trained using binary-cross entropy resulting in the
ollowing loss function 𝐿𝐷:

𝐷 = −E𝑥∼𝑝𝑑𝑎𝑡𝑎 [𝑙𝑜𝑔𝐷(𝑥)] + E𝑧∼𝑝𝑧 [𝑙𝑜𝑔(1 −𝐷(𝐺(𝑧)))] (1)

’s training objective is to minimise 𝐿𝐷 (or maximise −𝐿𝐷) while the
oal of the generator is the opposite (i.e. minimise −𝐿𝐷) resulting in
he value function 𝑉 (𝐺,𝐷) of a two-player zero-sum game between D
nd G:
in
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = min
𝐺

max
𝐷

[E𝑥∼𝑝𝑑𝑎𝑡𝑎 [𝑙𝑜𝑔𝐷(𝑥)]

+E𝑧∼𝑝𝑧 [𝑙𝑜𝑔(1 −𝐷(𝐺(𝑧)))]]
(2)

In theory, in convergence, the generator’s samples become indis-
tinguishable from the real training data (𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎 = 𝑝𝑔) and the
discriminator outputs 𝑝 = 1∕2 for any given sample 𝑥 (Goodfellow et al.,
2016). As this is a state where both D and G cannot improve further
on their objective by changing only their own strategy, it represents
a Nash equilibrium (Farnia and Ozdaglar, 2020; Nash et al., 1950). In
practice, achieving convergence for this or related adversarial training
schemes is an open research problem (Kodali et al., 2017; Mescheder
4

et al., 2018; Farnia and Ozdaglar, 2020).
3.2. Extensions of the Vanilla GAN methodology

As indicated by Fig. 4, numerous extensions of GANs have shown
to generate synthetic images with high realism (Karras et al., 2017,
2019, 2020; Chan et al., 2020) and under flexible conditions (Mirza and
Osindero, 2014; Odena et al., 2017; Park et al., 2018). GANs have been
successfully applied to generate high-dimensional data such as images
and, more recently, have also been proposed to generate discrete
data (Hjelm et al., 2017). Apart from image generation, GANs have
also widely been proposed and applied for paired and unpaired image-
to-image translation, domain-adaptation, data augmentation, image
inpainting, image perturbation, super-resolution, and image registra-
tion and reconstruction (Yi et al., 2019; Kazeminia et al., 2020; Wang
et al., 2019b).

Table 1 introduces a selection of common GAN extensions found to
be frequently applied to cancer imaging. For each GAN methodology in
this and the Tables 1–6, we define the ‘Task’ describing the application
of the respective adversarial network. For instance, in ‘noise-to-image
synthesis’ the input into the generator G consists of a noise vector
that G translates into an image. A further input into G can be a
class label as in ‘class-conditional-image-synthesis’ based on which an
output is generated that corresponds to this class. Paired and unpaired
translation refer to the task where the input into G is a sample (e.g. an
image in the source domain) based on which G generates another
sample (e.g. an image in the target domain). This translation is paired
if the training data consists of target and source domain sample pairs.
The key characteristics of each of the GAN extensions of Table 1 are
described in the following paragraphs.

3.2.1. Noise-to-image GAN extensions
As depicted in blue in Fig. 3, cGAN adds a discrete label as condi-

tional information to the original GAN architecture that is provided as
input to both generator and discriminator to generate class conditional
samples (Mirza and Osindero, 2014).

AC-GAN feeds the class label only to the generator while the dis-
criminator is tasked with correctly classifying both the class label and
whether the supplied image is real or fake (Odena et al., 2017).

WGAN is motivated by mathematical rationale and based on the
Wasserstein-1 distance (alias ‘earth mover distance’ or ‘Kantorovich
distance’) between two distributions. WGAN extends on the theoretic
formalisation and optimisation objective of the vanilla GAN to better
approximate the distribution of the real data. By applying an alternative
loss function (i.e. Wasserstein loss), the discriminator (alias ‘critic’
or ‘𝑓𝑤’) maximises – and the generator minimises – the difference
between the critic’s scores for generated and real samples. A important
benefit of WGAN is the empirically observed correlation of the loss with
sample quality, which helps to interpret WGAN training progress and
convergence (Arjovsky et al., 2017).

In WGAN, the weights of the critic are clipped, which means they
have to lie within a compact space [−𝑐, 𝑐]. This is needed to fulfil that
the critic is constraint to be in the space of 1-Lipschitz functions. With
clipped weights, however, the critic is biased towards learning simpler
functions and prone to have exploding or vanishing gradients if the
clipping threshold 𝑐 is not tuned with care (Gulrajani et al., 2017;
Arjovsky et al., 2017).

In WGAN-GP, the weight clipping constraint is replaced with a gra-
dient penalty. Gradient penalty of the critic is a tractable and soft ver-
sion of the following notion: By constraining that the norm of the gra-
dients of a differentiable function is at most 1 everywhere, the function
(i.e. the critic) would fulfil the 1-Lipschitz criterion without the need
of weight clipping. Compared, among others, to WGAN, WGAN-GP was
shown to have improved training stability (i.e. across many different
GAN architectures), training speed, and sample quality (Gulrajani et al.,
2017).

DCGAN generates realistic samples using a convolutional network

architecture with batch normalisation (Ioffe and Szegedy, 2015) for
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Fig. 3. An example of a generic GAN architecture applied to generation of synthetic mammography region of interest (ROI) images based on the INbreast dataset (Moreira et al.,
2012). Note that including the ‘Condition’ depicted in blue colour extends the vanilla GAN architecture (Goodfellow et al., 2014) to the cGAN architecture (Mirza and Osindero,
2014).
both generator and discriminator and progressively increases the spa-
tial dimension in the layers of the generator using transposed convolu-
tion (alias ‘fractionally-strided convolution’) (Radford et al., 2015).

PGGAN is tested with loss and configurations introduced in WGAN
GP. It starts by generating low pixel resolution images, but progres-
sively adds new layers to the generator and discriminator during train-
ing resulting in increased pixel resolution and finer image details. It is
suggested that after early convergence of initial low-resolution layers,
the introduced additional layers enforce the network to only refine
the learned representations by increasingly smaller-scale effects and
features (Karras et al., 2017).

In SRGAN, the generator transforms a low-resolution (LR) to a high-
resolution (HR, alias ‘super-resolution’) image, while the discriminator
learns to distinguish between real high-resolution images and fake
super-resolution images. Apart from an adversarial loss, a perceptual
loss called ‘content loss’ measures how well the generator represents
higher level image features. This content loss is computed as the
euclidean distance between feature representations of the reconstructed
image and the reference image based on feature maps of a pretrained
19 layer VGG (Simonyan and Zisserman, 2014) network (Ledig et al.,
2017).

3.2.2. Image-to-image GAN extensions
In image-to-image translation, a mapping is learned from one image

distribution to another. For example, images from one domain can be
transformed to resemble images from another domain via a mapping
function implemented by a GAN generator.

CycleGAN achieves realistic unpaired image-to-image translation
using two generators (𝐺, 𝐹 ) with one traditional adversarial loss
each and an additional cycle-consistency loss. Unpaired image-to-image
translation transforms images from domain 𝑋 to another domain 𝑌
in the absence of paired training data i.e. corresponding image pairs
for both domains. In CycleGAN, the input image 𝑥 from domain 𝑋
is translated by generator 𝐺(𝑥) to resemble a sample from domain 𝑌 .
Next, the sample is translated back from domain 𝑌 to domain 𝑋 by
generator 𝐹 (𝐺(𝑥)). The cycle consistency loss enforces that 𝐹 (𝐺(𝑥)) ≈ 𝑥
(forward cycle consistency) and that 𝐺(𝐹 (𝑦)) ≈ 𝑦 (backward cycle
consistency) (Zhu et al., 2017).

Both pix2pix and SPADE are used in paired image-to-image trans-
lation where corresponding image pairs for both domains 𝑋 and 𝑌
5

are available. pix2pix (alias ‘condGAN’) is a conditional adversarial
network that adapts the U-Net architecture4 (Ronneberger et al., 2015)
for the generator to facilitate encoding an conditional input image into
a latent representation before decoding it back into an output image.
pix2pix uses L1 loss to enforce low level (alias ‘low frequency’) image
reconstruction and a patch-based discriminator (‘PatchGAN’) to enforce
high level (alias ‘high frequency’) image reconstruction that the authors
suggest to interpret as texture/style loss. Note that the input into
the PatchGAN discriminator is a concatenation5 of the original image
(i.e. the generator’s input image; e.g. this can be a segmentation map)
and the real/generated image (i.e. the generator’s output image) (Isola
et al., 2017).

In SPADE, the generator architecture does not rely on an encoder
for downsampling, but uses a conditional normalisation method during
upsampling instead: A segmentation mask as conditional input into
the SPADE generator is provided to each of its upsampling layers via
spatially-adaptive residual blocks. These blocks embed the masks and
apply two two-layer convolutions to the embedded mask to get two ten-
sors with spatial dimensions. These two tensors are multiplied/added
to each upsampling layer prior to its activation function. The authors
demonstrate that this type of normalisation achieves better fidelity
and preservation of semantic information in comparison to other nor-
malisation methods that are commonly applied in neural networks
(e.g., Batch Normalisation). The multi-scale discriminators and the loss
functions from pix2pixHD (Wang et al., 2018a) are adapted in SPADE,
which contains a hinge loss (i.e. as substitute of the adversarial loss),
a perceptual loss, and a feature matching loss (Park et al., 2019).

3.2.3. GAN network architectures and adversarial loss
For further methodological detail on the aforementioned GAN meth-

ods, loss functions, and architectures, we point the interested reader
to the GAN methods review by Wang et al. (2019b). Due to the

4 To reduce information loss in latent space compression, U-Net uses skip
connections between corresponding layers (e.g., first to last) in the encoder
and decoder.

5 Note the concatenation of real_A and fake_B before computing the loss in
the discriminator backward pass (L93) in the authors’ pix2piximplementation.

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/pix2pix_model.py#L93
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Table 1
A selection of the GAN architectures that we found to be the ones most frequently applied in cancer imaging.

Publication Input G Input D Losses Task

Noise to image

GAN (Goodfellow et al., 2014) Noise Image Binary cross-entropy based
adversarial loss (𝐿𝐴𝐷𝑉 )

Noise-to-image synthesis

Conditional GAN (cGAN) (Mirza and
Osindero, 2014)

Noise & label Image & label 𝐿𝐴𝐷𝑉 Class-conditional image
synthesis

Auxiliary classifier GAN (AC-GAN) (Odena
et al., 2017)

Noise & label Image 𝐿𝐴𝐷𝑉 & cross-entropy loss (label
classification)

Class-conditional image
synthesis

Deep convolutional GAN (DCGAN) (Radford
et al., 2015)

Noise Image 𝐿𝐴𝐷𝑉 Noise-to-image synthesis

Wasserstein GAN (WGAN) (Arjovsky et al.,
2017)

Noise Image Wasserstein loss (𝐿𝑊𝐺𝐴𝑁 ) Noise-to-image synthesis

WGAN gradient penalty (WGAN GP)
(Gulrajani et al., 2017)

Noise Image 𝐿𝑊𝐺𝐴𝑁 with GP (𝐿𝑊𝐺𝐴𝑁−𝐺𝑃 ) Noise-to-image synthesis

Progressively growing GAN (PGGAN)
(Karras et al., 2017)

Noise Image 𝐿𝑊𝐺𝐴𝑁−𝐺𝑃 Noise-to-image synthesis

Image to Image

Super-Resolution GAN (SRGAN) (Ledig
et al., 2017)

Image (LR) Image (HR) 𝐿𝐴𝐷𝑉 & content loss (based on
VGG features)

Super-resolution

CycleGAN (Zhu et al., 2017) Source image Target image 𝐿𝐴𝐷𝑉 & cycle consistency loss &
identity loss

Unpaired image-to-image
translation

pix2pix (Isola et al., 2017) Source image Concatenated source and
target images

𝐿𝐴𝐷𝑉 & reconstruction loss (i.e.
L1)

Paired image-to-image
translation

SPatially-adaptive (DE)normalization
(SPADE) (Park et al., 2019)

Noise or encoded source
image & segmentation map

Concatenated target image
and segmentation map

Hinge & perceptual & feature
matching losses (from Wang
et al., 2018a)

Paired image-to-image
translation
image processing capabilities of CNNs (LeCun et al., 1989), the above-
mentioned GAN architectures generally rely on CNN layers internally.
Recently, TransGAN (Jiang et al., 2021) and VQGAN (Esser et al.,
2021) were proposed, which diverges from the CNN design pattern
to using Transformer Neural Networks (Vaswani et al., 2017). Due
to the promising performances of these approaches in computer vi-
sion tasks, we encourage future studies to investigate the potential
of transformer-based GANs for applications in medical and cancer
imaging.

Multiple deep learning architectures apply the adversarial loss pro-
posed in Goodfellow et al. (2014) together with other loss functions
(e.g., segmentation loss functions) for other tasks than image gener-
ation (e.g., image segmentation). This adversarial loss is useful for
unsupervised learning of features and representations that are invariant
to some part of the training data. For instance, adversarial learning
can be useful to discriminate a domain to learn domain-invariant
representations (Ganin and Lempitsky, 2015), as has been success-
fully demonstrated for medical images (Kamnitsas et al., 2017). Such
methods that apply the adversarial loss internally are referred to as
‘adversarial training’ methods and are included in the scope of our
survey. That is, we include and consider all relevant cancer imaging
papers that apply or build upon the adversarial learning scheme de-
fined in Goodfellow et al. (2014), which comprises GANs as well as
adversarial training methods.

4. Cancer imaging challenges addressed by data synthesis and
adversarial networks

In this section we follow the structure presented in Fig. 1, where
we categorise cancer imaging challenges into five categories consisting
of data scarcity and usability (4.1), data access and privacy (4.2), data
annotation and segmentation (4.3), detection and diagnosis (4.4), and treat-
ent and monitoring (4.5). In each subsection, we group and analyse

espective cancer imaging challenges and discuss the potential and the
imitations of corresponding GAN-based data synthesis and adversarial
raining solutions. In this regard, we also identify and highlight key
eeds to be addressed by researchers in the field of cancer imaging
6

GANs towards solving the surveyed cancer imaging challenges. We pro-
vide respective Tables 2–6 for each Sections 4.1–4.5 containing relevant
information (publication, method, dataset, modality, task, highlights)
for all of the reviewed cancer imaging GAN solutions.

Chronology of key innovations. The most commonly applied adversarial
network methodologies in cancer imaging are summarised chronologi-
cally in Fig. 4. Next to each network (a)–(m), the number of occurrence
per cancer imaging challenge category 4.1–4.5 is highlighted.

Following Vanilla GANs 4(a), four main lines of innovations have
been widely adopted in cancer imaging. These are methods that con-
dition the synthetic data generation e.g. cGAN 4(b), methods that
improve upon the network architecture e.g. DCGAN 4(c), methods
that improve upon the adversarial loss function e.g. WGAN 4(g), and
methods that backpropagate the adversarial loss for representation
learning, e.g. domain-invariant representations 4(d).

As to conditional methods, further key innovations have been AC-
GAN’s 4(f) discriminator classifying the input condition, and methods
that conditioning the generation based on an input image using ad-
ditional reconstruction (e.g., pix2pix 4(e), cycleGAN 4(h)) or percep-
tual (e.g., SRGAN 4(i)) losses. Recent approaches (e.g., SPADE 4(l))
innovate regarding how the input image is provided to the genera-
tor network, e.g., via spatially-adaptive residual blocks in upsampling
layers.

WGAN’s 4(g) loss based on the discriminator estimating the
Wasserstein-1 distance between real and synthetic image distributions
is a widely used and extended (e.g., WGAN-GP 4(j)) alternative to the
vanilla binary-cross entropy adversarial loss in cancer imaging.

The architectural innovation of progressive network growing 4(k)
unlocked high-resolution cancer image generation and is adopted by
recent approaches such as StyleGAN 4(m), which introduced adaptive
instance normalisation and pioneered noise (and style condition) input
via intermediate activation maps.

4.1. Data scarcity and usability challenges

4.1.1. Challenging dataset sizes and shifts
Although data repositories such as The Cancer Imaging Archive

(TCIA) (Clark et al., 2013) have made a wealth of cancer imaging
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Fig. 4. The chronological evolution of adversarial networks in cancer imaging based on the commonly applied GAN types (a)–(m). The shape of the respective GAN indicates its
mapping function, e.g., a trapezium represents a noise-to-image mapping function. For each cancer imaging challenge category surveyed in 4, the number of occurrences of each
GAN type (a)–(m) is counted across reviewed publications. The illustration abbreviates challenge categories as SCA: 4.1 Data scarcity and usability challenges, PRI: 4.2 Data access
and privacy challenges, SEG: 4.3 Data annotation and segmentation challenges, DET: 4.4 Detection and diagnosis challenges, TRE: 4.5 Treatment and monitoring challenges.
data available for research, the demand is still far from satisfied. As
a result, data augmentation techniques are widely used to artificially
enlarge the existing datasets, traditionally including simple spatial
(e.g., flipping, rotation) or intensity transformations (e.g., noise inser-
tion) of the true data. GANs have shown promise as a more advanced
augmentation technique and have already seen use in medical and
cancer imaging (Han et al., 2018; Yi et al., 2019).

Aside from the issue of lacking sizeable data, data scarcity often
forces studies to be constrained on small-scale single-centre datasets.
The resulting findings and models are likely to not generalise well
due to diverging distributions between the (synthetic) datasets seen
in training and those seen in testing or after deployment, a phe-
nomenon known as dataset shift (Quionero-Candela et al., 2009).6 An
example of this in clinical practice are cases where training data is
preselected from specific patient sub-populations (e.g., only high-risk
patients) resulting in bias and limited generalisability to the broad
patient population (Troyanskaya et al., 2020; Bi et al., 2019).

From a causality perspective, dataset shift can be split into several
distinct scenarios (Castro et al., 2020):

• Population shift, caused by differences in age, sex, ethnicities etc.
• Acquisition shift, caused by differences in scanners, resolution,

contrast etc.
• Annotation shift, caused by differences in annotation policy, anno-

tator experience, segmentation protocols etc.
• Prevalence shift, caused by differences in the disease prevalence in

the population, often resulting from artificial sampling of data
• Manifestation shift, caused by differences in how the disease is

manifested

GANs may inadvertently introduce such types of dataset shifts
(e.g., due to mode collapse Goodfellow et al., 2014), but it has been
shown that this shift can be studied, measured and avoided (Santurkar

6 More concretely, this describes a case of covariate shift (Quionero-Candela
et al., 2009; Shimodaira, 2000) defined by a change of distribution within the
independent variables between two datasets.
7

et al., 2018; Arora et al., 2018). GANs can be a sophisticated tool for
data augmentation or curation (Diaz et al., 2021) and by calibrating
the type of shift introduced, they have the potential to turn it into an
advantage, generating diverse training data that can help models gen-
eralise better to unseen target domains. The research line studying this
problem is called domain generalisation, and it has presented promising
results for harnessing adversarial models towards learning of domain-
invariant features (Zhou et al., 2021). GANs and adversarial training
have been used in various ways in this context, using multi-source
data to generalise to unseen targets (Rahman et al., 2019; Li et al.,
2018) or in unsupervised domain generalisation using adaptive data
augmentation to append adversarial examples iteratively (Volpi et al.,
2018). As indicated in Fig. 1(a), the domain generalisation research line
has recently been further extended to cancer imaging (Lafarge et al.,
2019; Chen et al., 2021).

In the following, further cancer imaging challenges in the realm of
data scarcity and usability are described and related GAN solutions are
referenced. Given these challenges and solutions, we derive a work-
flow for clinical adoption of (synthetic) cancer imaging data, which is
illustrated in Fig. 5.

4.1.2. Imbalanced data and fairness
Apart from the rise of data-hungry deep learning solutions and the

need to cover the different organs and data acquisition modalities, a
major problem that arises from data scarcity is that of imbalance—
i.e. the overrepresentation of a certain type of data over others (Bi
et al., 2019). In its more common form, imbalance of diagnostic labels
can hurt a model’s specificity or sensitivity, as a prior bias from the
data distribution may be learned. The Lung Screening Study (LSS)
Feasibility Phase exemplifies the common class imbalance in cancer
imaging data: 325 (20.5%) suspicious lung nodules were detected in
the 1586 first low-dose CT screening, of which only 30 (1.89%) were
lung cancers (Gohagan et al., 2004, 2005; NLST Research Team, 2011).
This problem directly translates to multi-task classification (CLF), with
imbalance between different types of cancer leading to worse sensitivity
on the underrepresented categories (Yu et al., 2013). It is important
to note that by solving the imbalance with augmentation techniques,
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Fig. 5. Illustration of a workflow that applies GANs to the challenges of data scarcity and data curation. After the GAN generates synthetic data specific to the issue at hand, the
data is automatically and manually evaluated before further used in medical AI research. Ultimately, both synthetic data and medical AI models are integrated as decision support
tools into clinical practice.
bias is introduced as the prior distribution is manipulated, causing
prevalence shift. As such, the test set should preserve the population
statistics. Aside from imbalance of labels, more insidious forms of
imbalance such as that of race/ethnicity (Adamson and Smith, 2018)
or gender (Larrazabal et al., 2020) of patients are easily omitted in
studies. This leads to fairness problems in real world applications as
underrepresenting such categories in the training set will hurt per-
formance on these categories in the real world (population shift) (Li
et al., 2021a). Because of their potential to generate synthetic data,
GANs are a promising solution to the aforementioned problems and
have already been thoroughly explored in this regard in Computer
Vision (Sampath et al., 2021; Mullick et al., 2019). Concretely, the
discriminator and generator can be conditioned on underrepresented
labels, forcing the generator to create images for a specific class,7 as
indicated in Fig. 1(d). Many lesions classifiable by complex scoring
systems such as RADS reporting are rare and, hence, effective con-
ditional data augmentation is needed to improve the recognition of
such lesions by ML detection models (Kazuhiro et al., 2018). GANs
have already been used to adjust label distributions in imbalanced
cancer imaging datasets, e.g. by generating underrepresented grades
in a risk assessment scoring system (Hu et al., 2018b) for prostate
cancer. A further promising applicable method is to enrich the data
using a related domain as proxy input (Addepalli et al., 2020). Towards
the goal of a more diverse distribution of data with respect to gender
and ethnicity, similar principles can be applied. For instance, Li et al.
(2021a) proposed an adversarial training scheme to improve fairness
in classification of skin lesions for underrepresented groups (age, sex,
skin tone) by learning a neutral representation using an adversarial bias
discrimination loss. Fairness imposing GANs can also generate synthetic
data with a preference for underrepresented groups, so that models
may ingest a more balanced dataset, improving demographic parity
without excluding data from the training pipeline. Such models have
been trained in computer vision tasks (Sattigeri et al., 2018; Wang
et al., 2019a; Zhang et al., 2018a; Xu et al., 2018; Beutel et al., 2017),
but corresponding research on medical and cancer imaging denoted by
Fig. 1(c) has been limited (Li et al., 2021a; Ghorbani et al., 2020).

7 The class can be something as simple as ‘malignant’ or ‘benign’, or a more
complex score for risk assessment of a tumour such as the BiRADs scoring
system for breast tumours (Liberman and Menell, 2002).
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4.1.3. Cross-modal data generation
In cancer, multiple acquisition modalities are enlisted in clinical

practice (Kim et al., 2016; Chen et al., 2017; Barbaro et al., 2017; Chang
et al., 2020b,a); thus automated diagnostic models should ideally learn
to interpret various modalities as well or learn a shared representation
of these modalities. Conditional GANs offer the possibility to generate
one or multiple (Yurt et al., 2019; Li et al., 2019a; Zhou et al.,
2020) modalities from another, alleviating the need to actually perform
the potentially more harmful screenings—i.e. high-dose CT, PET—that
expose patients to radiation, or require invasive contrast agents such as
intravenous iodine-based contrast media (ICM) in CT (Haubold et al.,
2021), gadolinium-based contrast agents in MRI (Zhao et al., 2020a) (in
Table 5) or radioactive tracers in PET (Wang et al., 2018b; Zhao et al.,
2020b). Furthermore, extending the acquisition modalities used in a
given task would also enhance the performance and generalisability of
AI models, allowing them to learn shared representations among these
imaging modalities (Bi et al., 2019; Hosny et al., 2018). Towards this
goal, multiple GAN domain-adaptation solutions have been proposed to
generate CT using MRI (Wolterink et al., 2017; Kearney et al., 2020b;
Tanner et al., 2018; Kaiser and Albarqouni, 2019; Nie et al., 2017;
Kazemifar et al., 2020; Prokopenko et al., 2019), PET from MRI (Wang
et al., 2018b), PET from CT (Ben-Cohen et al., 2017; Bi et al., 2017) (in
Table 5), and CT from PET as in Armanious et al. (2020), where also
GAN-based PET denoising and MR motion correction are demonstrated.
If not indicated otherwise, these image-to-image translation studies are
outlined in Table 2. Because of its complexity, clinical cancer diagnosis
is based not only on imaging but also non-imaging data (genomic,
molecular, clinical, radiological, demographic, etc.). In cases where this
data is readily available, it can serve as conditional input to GANs
towards the generation of images with the corresponding phenotype–
genotype mapping, as is also elaborated in regard to tumour profiling
for treatment in Section 4.5.1. A multimodal cGAN was recently devel-
oped, conditioned on both images and gene expression code (Xu et al.,
2020); however, research along this line is otherwise limited.

4.1.4. Feature hallucinations in synthetic data
As displayed in Fig. 6 and denoted in Fig. 1(b), conditional GANs

can unintentionally8 hallucinate non-existent artifacts into a patient
image. This is particularly likely to occur in cross-modal data aug-
mentation, especially but not exclusively if the underlying dataset is

8 Intentional feature injection or removal is discussed in 4.2.5.
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Fig. 6. Example of a GAN that translates Film Scanned MMG (source) to Full-Field Digital MMG (target). The generator transforms ‘benign’ source images (triangles) into ‘malignant’
target images (plus symbols). As opposed to source, the target domain contains more malignant MMGs than benign ones. If the discriminator thus learns to associate malignancy
with realness, this incentivises the generator to inject malignant features (depicted by dotted arrows). For simplicity additional losses (e.g., reconstruction losses) are omitted.
imbalanced. For instance, Cohen et al. (2018a) describe GAN image
feature hallucinations embodied by added and removed brain tumours
in cranial MRI. The authors tested the relationship between the ratio of
tumour images in the GAN target distribution and the ratio of images
diagnosed with tumours by a classifier. The classifier was trained on the
GAN generated target dataset, but tested on a balanced holdout test
set. It was thereby shown that the generator of CycleGAN effectively
learned to hide source domain image features in target domain images,
which arguably helped it to fool its discriminator. Paired image-to-
image translation with pix2pix (Isola et al., 2017) was more stable, but
still some hallucinations were shown to likely have occurred. A cause
for this can be a biased discriminator that has learned to discriminating
specific image features (e.g., tumours) that are more present in one
domain. Cohen et al. (2018a,b) and Wolterink et al. (2018) warn
that models that map source to target images, have an incentive to
add/remove features during translation if the feature distribution in
the target domain is distinct from the feature distribution in the source
domain.9

Domain-adaptation with unpaired image-to-image translation GANs
such as CyleGAN has become increasingly popular in cancer imag-
ing (Wolterink et al., 2017; Tanner et al., 2018; Modanwal et al., 2019;
Fossen-Romsaas et al., 2020; Zhao et al., 2020b; Hognon et al., 2019;
Mathew et al., 2020; Kearney et al., 2020b; Peng et al., 2020; Jiang
et al., 2018; Sandfort et al., 2019). As described, these methods are
hallucination-prone and, thus, can put patients at risk when used in
clinical settings. More research is needed on how to robustly avoid
or detect and eliminate hallucinations in generated data. To this end,
we highlight the potential of investigating feature preserving image
translation techniques and methods for evaluating whether features
have been accurately translated. For instance, in the presence of feature
masks or annotations, an additional local reconstruction loss can be
introduced in GANs that enforces feature translation in specific image
areas.

4.1.5. Data curation and harmonisation
Aside from the limited availability of cancer imaging datasets, a

major problem is that the ones available are often not readily useable

9 For example, if one domain contains mainly healthy images, while the
other domain contains mainly pathological images.
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and require further curation (Hosny et al., 2018). Curation includes
dataset formatting, normalising, structuring, de-identification, quality
assessment and other methods to facilitate subsequent data processing
steps, one of which is the ingestion of the data into AI models (Diaz
et al., 2021). In the past, GANs have been proposed for curation
of data labelling, segmentation and annotation of images (details in
Section 4.3) and de-identification of facial features, EHRs, etc (details
in Section 4.2). Particular to cancer imaging datasets and of significant
importance is the correction of artifacts, such as patient motion, metal-
lic objects, chemical shifts and others caused by the image processing
pipeline (Pusey et al., 1986; Nehmeh et al., 2002), which run the risk
of confusing models with spurious information. Towards the principled
removal of artifacts, several GAN solutions have been proposed (Vu
et al., 2020b; Koike et al., 2020; Armanious et al., 2020). As for the
task of reconstruction of compressed data (e.g., compressed sensing
MRI Mardani et al., 2017), markedly, Yang et al. (2018a) proposed
DAGAN, which is based on U-Net (Ronneberger et al., 2015), reduces
aliasing artifacts, and faithfully preserves texture, boundaries and edges
(of brain tumours) in the reconstructed images. Kim et al. (2018a)
feed down-sampled high-resolution brain tumour MRI into a GAN
framework similar to pix2pix to reconstruct high-resolution images
with different contrast. The authors highlight the possible acceleration
of MR imagery collection while retaining high-resolution images in
multiple contrasts, necessary for further clinical decision-making. As
relevant to the context of data quality curation, GANs have also been
proposed for image super-resolution in cancer imaging (e.g., for lung
nodule detection Gu et al., 2020, abdominal CT You et al., 2019, and
breast histopathology Shahidi, 2021).

Beyond the lack of curation, a problem particular to multi-centre
studies is that of inconsistent curation between data derived in different
centres. These discontinuities arise from different scanners, segmenta-
tion protocols, demographics, etc, and can cause significant problems
to subsequent ML algorithms that may overfit or bias towards one
configuration over another (i.e. acquisition and annotation shifts).
GANs have the potential to contribute in this domain as well by
bringing the distributions of images across different centres closer
together. In this context recent work by Li et al. (2021b) and Wei
et al. (2020) used GAN-based volumetric normalisation to reduce the
variability of heterogeneous 3D chest CT scans of different slice thick-
ness and dose levels. The authors showed that features in subsequent
radiomics analysis exhibit increased alignment. Other works in this
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domain include a framework that could standardise heterogeneous
datasets with a single reference image and obtained promising results
on an MRI dataset (Hognon et al., 2019), and GANs that learn bidi-
rectional mappings between different vendors to normalise dynamic
contrast enhanced (DCE) breast MRI (Modanwal et al., 2019). An
interesting research direction to be explored in the future is synthetic
multi-centre data generation using GANs, simulating the distribution of
various scanners/centres.

4.1.6. Synthetic data assessment
As indicated in Fig. 1(e), a condition of paramount importance is

proper evaluation of GAN-generated or GAN-curated data. This evalua-
tion is to verify that synthetic data is useable for a desired downstream
task (e.g., segmentation, classification) and/or indistinguishable from
real data while ensuring that no private information is leaked. GANs are
commonly evaluated based on fidelity (realism of generated samples)
and diversity (variation of generated samples compared to real sam-
ples) (Borji, 2021). Different quantitative measures exist to assess GANs
based on the fidelity and diversity of its generated synthetic medical
images (Yi et al., 2019; Borji, 2021).

Visual Turing tests (otherwise referred to as Visual Assessment,
Mean Opinion Score (MOS) Test, and sometimes used interchangeably
with In-Silico Clinical Trials) are arguably the most reliable approach,
where clinical experts are presented with samples from real and gener-
ated data and are tasked to identify which one is generated. Korkinof
et al. (2020) showed that their PGGAN-generated (Karras et al., 2017)
1280 × 1024 mammograms were inseparable by the majority of par-
ticipants, including trained breast radiologists. A similar visual Turing
test was successfully done in the case of skin disease (Ghorbani et al.,
2020), super-resolution of CT (You et al., 2019), brain MRI (Kazuhiro
et al., 2018; Han et al., 2018), lung cancer CT scans (Chuquicusma
et al., 2018), and histopathology images (Levine et al., 2020). For
instance, Chuquicusma et al. (2018) trained a DCGAN (Radford et al.,
2015) on the LIDC-IDRI dataset (Armato III et al., 2011) to generate
2D (56 × 56 pixel) pulmonary lung nodule scans that were realistic
enough to deceive 2 radiologists with 11 and 4 years of experience.
In contrast to computer vision techniques where synthetic data can
often be easily evaluated by any non-expert, the requirement of clinical
experts makes Visual Turing Tests in this domain much more costly.
Furthermore, a lack of scalability and consistency in medical judgement
needs to be taken into account as well Brennan and Silman (1992)
and visual Turing tests should in the ideal case engage a range of
experts to address inter-observer variation in the assessments. Also,
iterating over the same observer addresses intra-observer variation—
i.e. repeating the process within a certain amount of intervals that
could be days or weeks. These problems are further magnified by the
shortage of radiology experts (Mahajan and Venugopal, 2020; Rimmer,
2017) which brings up the necessity for supplementary metrics that can
automate the evaluation of generative models. Such metrics allow for
preliminary evaluation and can enable research to progress without the
logistical hurdle of enlisting experts.

Furthermore, in cases where the sole purpose of the generated data
is to improve a downstream task—i.e. classification or segmentation—
then the prediction success of the downstream task would be the
metric of interest. The latter can reasonably be prioritised over other
metrics given that the underlying reasons why the synthetic data alters
downstream task performance are examined and clarified.10

10 For example, synthetic data may balance imbalanced datasets, reduce
verfitting on limited training data, or improve model robustness to better
apture domain shifts in the test dataset.
10
Image quality assessment metrics. Wang et al. (2004) have thoroughly
investigated image quality assessment metrics. The most commonly
applied metrics include structural similarity index measure (SSIM)11

between generated image and reference image (Wang et al., 2004),
mean squared error (MSE)12 and peak signal-to-noise ratio (PSNR).13

In a recent example that followed this framework of evaluation, syn-
thetic brain MRI with tumours generated by edge-aware EA-GAN (Yu
et al., 2019) was assessed using three such metrics: PSNR, SSIM, and
normalised mean squared error (NMSE). The authors integrated an end-
to-end sobel edge detector to create edge maps from real/synthetic
images that are input into the discriminator in the dEa-GAN vari-
ant to enforce improved textural structure and object boundaries. In-
terestingly, aside from evaluating on the whole image, the authors
demonstrated evaluation results focused on the tumour regions, which
were overall significantly lower than the whole image. Other works
that have evaluated their synthetic images in an automatic manner
have focused primarily on the SSIM and PSNR metrics and include
generation of CT (Kearney et al., 2020b; Mathew et al., 2020) and
PET scans (Zhao et al., 2020b). While indicative of image quality, these
similarity-based metrics might not generalise well to human judgement
of image similarity, the latter depending on high-order image structure
and context (Zhang et al., 2018c). Finding evaluation metrics that are
strong correlates of human judgement of perceptual image similarity
is a promising line of research. In the context of cancer and medical
imaging, we highlight the need for evaluation metrics for synthetic
images that correlate with the perceptual image similarity judged by
medical experts. Apart from perceptual image similarity, further eval-
uation metrics in cancer and medical imaging are to be investigated
that are able to estimate the diagnostic value of (synthetic) images and,
in the presence of reference images, the diagnostic value proportion
between target and reference image.

Deep generative model-specific assessment metrics. In recent years, the In-
ception score (IS) (Salimans et al., 2016) and Fréchet Inception distance
(FID) (Heusel et al., 2017) have emerged, offering a more sophisticated
alternative for the assessment of synthetic data. The IS uses a classifier
to generate a probability distribution of labels given a synthetic image.
If the probability distribution is highly skewed, it is indicative that a
specific object is present in the image (resulting in a higher IS), while in
the case where it is uniform, the image contains a jumble of objects and
that is more likely to be non-sense (resulting in a lower IS).14 The FID
metric compares the distance between the synthetic image distribution
to that of the real image distribution by comparing extracted high-
level features from one of the layers of a classifier (e.g., Inception
v3 as in IS). Both metrics have shown promise in the evaluation of
GAN-generated data; however, they come with several bias issues that
need to be taken into account during evaluation (Chong and Forsyth,
2020; DeVries et al., 2019; Borji, 2019). As these metrics have not
been widely used in cancer imaging yet, their applicability on GAN-
synthesised cancer images remains to be investigated. In contrast to
computer vision datasets containing diverse objects, medical imaging
datasets commonly only contain images of one specific organ. In this
regard, we promote further research as to how object diversity based
methods such as IS can be applied to medical and cancer imaging,

11 SSIM predicts perceived quality and considers image statistics to assess
structural information based on luminance, contrast, and structure.

12 MSE is computed by averaging the squared intensity differences between
corresponding pixels of the generated image and the reference image.

13 PSNR is an adjustment to the MSE score, commonly used to measure
reconstruction quality in lossy compression.

14 Not only a low label entropy within an image is desired, but also a
high label entropy across images: IS also assesses the variety of peaks in
the probability distributions generated from the synthetic images, so that a
higher variety is indicative of more diverse objects being generated by the
GAN (resulting in a higher IS).
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which requires, among others, meaningful adjustments of the dataset-
specific pretrained classifications models (i.e. Inception v3) that IS and
FID rely upon.

Uncertainty quantification as GAN evaluation metric?. A general problem
facing the adoption of deep learning methods in clinical tasks is their
inherent unreliability exemplified by high prediction variation caused
by minimal input variation (e.g., one pixel attack Korpihalkola et al.,
2020). This is further exacerbated by the nontransparent decision
making process inside deep neural networks thus often described as
‘black box models’ (Bi et al., 2019). Also, the performance of deep
learning methods in out-of-domain datasets has been assessed as un-
reliable (Lim et al., 2019). To eventually achieve beneficial clinical
adoption and trust, examining and reporting the inherent uncertainty
of these models on each prediction becomes a necessity. Besides classi-
fication, segmentation (Hu et al., 2020; Alshehhi and Alshehhi, 2021),
etc, uncertainty estimation is applicable to models in the context of
data generation as well (Lim et al., 2019; Abdar et al., 2020; Hu et al.,
2020). Edupuganti et al. (2019) studied a GAN architecture based on
variational autoencoders (VAE) (Kingma and Welling, 2013) on the task
of MRI reconstruction, with emphasis on uncertainty studies. Due to
their probabilistic nature, VAEs allowed for a Monte Carlo sampling
approach which enables quantification of pixel-variance and the gen-
eration of uncertainty maps. Furthermore, they used Stein’s Unbiased
Risk Estimator (SURE) (Stein, 1981) as a measure of uncertainty that
serves as surrogate of MSE even in the absence of ground truth. Their
results indicated that adversarial losses introduce more uncertainty.
Parallel to image reconstruction, uncertainty has also been studied in
the context of brain tumours (glioma) in MRI enhancement (Tanno
et al., 2021). In this study, a probabilistic deep learning framework for
model uncertainty quantification was proposed, decomposing the prob-
lem into two uncertainty types: intrinsic uncertainty (particular to image
enhancement and pertaining to the one-to-many nature of the super-
resolution mapping) and parameter uncertainty (a general challenge, it
pertains to the choice of the optimal model parameters). The overall
model uncertainty in this case is a combination of the two and was
evaluated for image super-resolution. Through a series of systematic
studies the utility of this approach was highlighted, as it resulted
in improved overall prediction performance of the evaluated models
even for out-of-distribution data. It was further shown that predictive
uncertainty highly correlated with reconstruction error, which not only
enabled spotting unrealistic synthetic images, but also highlights the
potential in further exploring uncertainty as an evaluation metric for
GAN-generated data. A further use-case of interest for GAN evaluation
via uncertainty estimation is the ‘adherence’ to provided conditional
inputs. As elaborated in 4.1.4 for image-to-image translation, condi-
tional GANs are likely to introduce features that do not correspond to
the conditional class label or source image. After training a classifica-
tion model on image features of interest (say, tumour vs non-tumour
features), we can examine the classifier’s prediction and estimated
uncertainty15 for the generated images. Given the expected features in
the generated images are known beforehand, the classifier’s uncertainty
of the presence of these features can be used to estimate not only image
fidelity (e.g., image features are not generated realistic enough), but
also ‘condition adherence’ (e.g., expected image features are altered
during generation).

Outlook on clinical adoption. Alongside GAN-specific and standard im-
age assessment metrics, uncertainty-based evaluation schemes can fur-
ther automate the analysis of generative models. To this end, the
challenge of clinical validation for predictive uncertainty as a reliability
metric for synthetic data assessment remains (Tanno et al., 2021). In

15 The uncertainty can be estimated using methods such as Bayesian Neu-
al Networks (MacKay, 1992; Neal, 2012), Monte-Carlo Dropout (Gal and
hahramani, 2016) or Deep Ensembles (Lakshminarayanan et al., 2016).
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practice, building clinical trust in AI models is a non-trivial endeavour
and will require rigorous performance monitoring and calibration espe-
cially in the early stages (Kelly et al., 2019; Durán and Jongsma, 2021).
This is particularly the case when CADe and CADx models are trained
on entirely (or partially) synthetic data given that the data itself was not
first assessed by clinicians. Until a certain level of trust is built in these
pipelines, automatic metrics will be a preliminary evaluation step that
is inevitably followed by diligent clinical evaluation for deployment.
A research direction of interest in this context would be ‘gatekeeper’
GANs—i.e. GANs that simulate common data (and/or difficult edge
cases) of the target hospital, on which deployment-ready candidate
models (e.g., segmentation, classification, etc.) are then tested to ensure
they are sufficiently generalisable. If the candidate model performance
on such test data satisfies a predefined threshold, it has passed this
quality gate for clinical deployment.

4.2. Data access and privacy challenges

Access to sufficiently large and labelled data resources is the main
constraint for the development of deep learning models for medical
imaging tasks (Esteva et al., 2019). In cancer imaging, the practice
of sharing validated data to aid the development of AI algorithms is
restricted due to technical, ethical, and legal concerns (Bi et al., 2019).
The latter is exemplified by regulations such as the Health Insurance
Portability and Accountability Act (HIPAA, 1996) in the United States
of America (USA) or the European Union’s General Data Protection
Regulation (GDPR, 2016) with which respective clinical centres must
comply with. Alongside the need and numerous benefits of patient
privacy preservation, it can also limit data sharing initiatives and
restrict the availability, size and usability of public cancer imaging
datasets. Bi et al. (2019) assess the absence of such datasets as a
noteworthy challenge for AI in cancer imaging.

The published GANs and adversarial training methods that are
suggested for or applied to cancer imaging challenges within this
Section 4.2 are summarise below in Table 3.

4.2.1. Decentralised data generation
As AI systems are often developed and trained outside of medical

institutions, prior approval to transfer data out of their respective data
silos is required, adding significant hurdles to the logistics of setting
up a training pipeline or rendering it entirely impossible. In addition,
medical institutions can often not guarantee a secured connection to
systems deployed outside their centres (Hosny et al., 2018), which
further limits their options to share valuable training data.

One privacy preserving approach solving this problem is federated
learning (McMahan et al., 2017), where copies of an AI model are
trained in a distributed fashion inside each clinical centre in paral-
lel and are aggregated to a global model in a central server. This
eliminates the need for sensitive patient data to leave any of the
clinical centres (Kaissis et al., 2020; Sheller et al., 2020). However,
it is to be noted that federated learning cannot guarantee full patient
privacy. Hitaj et al. (2017) demonstrated that any malicious user can
train a GAN to violate the privacy of the other users in a federated
learning system. While difficult to avoid, the risk of such GAN-based
attacks can be minimised, e.g., by using a combination of selective
parameter updates (Shokri and Shmatikov, 2015) (sharing only a small
selected part of the model parameters across centres) and the sparse
vector technique16 as shown by Li et al. (2019b).

To solve the challenge of privacy assurance of clinical medical
imaging data, a distributed GAN (Hardy et al., 2019; Xin et al., 2020;
Guerraoui et al., 2020; Rasouli et al., 2020; Zhang et al., 2021) can

16 Sparse Vector Technique (SVT) (Lyu et al., 2016) is a Differential Privacy
(DP) (Dwork, 2006) method that introduces noise into a deep learning model’s
gradients.
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Table 2
Overview of adversarially-trained models applied to cancer imaging data scarcity and usability challenges. Publications are clustered by section and ordered by year in ascending
order.

Publication Method Dataset Modality Task Highlights

Imbalanced data & fairness

Hu et al. (2018b) ProstateGAN Private Prostate MRI Class-conditional
synthesis

Gleason score (cancer grade) class conditions.

Ghorbani et al.
(2020)

DermGAN Private Dermoscopy Paired translation Adapted pix2pix evaluated via Turing Tests and
rare skin condition CLF.

Li et al. (2021a) Encoder ISIC 2018
(Codella
et al., 2018)

Dermoscopy Adversarial training,
Representation
learning

Fair Encoder with bias discriminator and skin
lesion CLF.

Cross-modal data generation

Wolterink et al.
(2017)

CycleGAN Private Cranial MRI/CT Unpaired translation First CNN for unpaired MR-to-CT translation.
Evaluated via PSNR and MAE.

Ben-Cohen et al.
(2017)

pix2pix Private Liver PET/CT Paired translation Paired CT-to-PET translation with focus on
hepatic malignant tumours.

Nie et al. (2017) context-aware
GAN

ADNI
(Wyman
et al., 2013;
Weiner et al.,
2017)

Cranial/pelvic
MRI/CT

Paired translation Supervised 3D GAN for MR-to-CT translation
with ‘Auto-Context Model’ (ACM).

Wang et al. (2018b) Locality
Adaptive GAN
(LA-GAN)

BrainWeb
phantom
(Cocosco
et al., 1997)

Cranial MRI, PET
phantom

Paired translation 3D auto-context, synthesising PET from
low-dose PET and multimodal MRI.

Tanner et al. (2018) CycleGAN VISCERAL
(Jimenez-del
Toro et al.,
2016)

Lung/abdominal
MRI/CT

Image registration MR-CT CycleGAN for registration.

Kaiser and
Albarqouni (2019)

pix2pix,
context-aware
GAN (Nie et al.,
2017)

RIRE
(Fitzpatrick,
1998)

Cranial MRI/CT Paired translation Detailed preprocessing description, MR-to-CT
translation, comparison with U-Net.

Prokopenko et al.
(2019)

DualGAN,
SRGAN

CPTAC3
(National
Cancer
Institute,
2018) &
Head-Neck-
PET-CT
(Vallières
et al., 2017)

Cranial MRI/CT Unpaired translation DualGAN for unpaired MR-to-CT, visual Turing
tests.

Yurt et al. (2019)
mrirecon

mustGAN IXI (IXI
Dataset,
2007) &
ISLES (Maier
et al., 2017)

Cranial MRI Paired translation FLAIR, T1, T2 synthesis via feature fusion of
one-to-one and many-to-one pix2pix networks.

Li et al. (2019a) diamondGAN Private &
MICCAI-
WMH (Kuijf
et al., 2019)

Cranial MRI Unpaired translation Target modality synthesis from flexible set of
non-aligned source modalities.

Zhou et al. (2020) hi-Net BRATS 2018
(Menze et al.,
2014; Bakas
et al., 2018)

Cranial MRI Paired translation Domain-specific encoder network features fused
into layers of pix2pix-based network.

Zhao et al. (2020b) S-CycleGAN Private Cranial low/full
dose PET

Paired translation Low (LDPET) to full dose (FDPET) translation
with supervised loss for paired images.

Kearney et al.
(2020b)

VAE-enhanced
A-CycleGAN

Private Cranial MRI/CT Unpaired translation MR-to-CT evaluated via PSNR, SSIM, MAE.
Superior to paired alternatives.

Kazemifar et al.
(2020)

context-aware
GAN

Private Cranial MRI/CT Paired translation Feasibility of generated CT from MRI for dose
calculation for radiation treatment.

Armanious et al.
(2020)

MedGAN Private Liver PET/CT Paired translation CasNet architecture, PET-to-CT, MRI motion
artifact correction, PET denoising.

Xu et al. (2020) multi-conditional
GAN

NSCLC (Zhou
et al., 2018)

Lung CT, gene
expression

Multi-input
conditional synthesis

Image-gene data fusion, nodule generator
input: background, segmentation, gene code.

Haubold et al.
(2021)

Pix2PixHD
(Wang et al.,
2018a)

Private Arterial phase CT Paired translation Low-to-full ICM CT (thorax, liver, abdomen),
50% reduction in intravenous ICM dose.

(continued on next page)
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Table 2 (continued).
Publication Method Dataset Modality Task Highlights

Feature hallucinations

Cohen et al.
(2018a,b)
dist-bias

CycleGAN,
pix2pix

BRATS2013
(Menze et al.,
2014)

Cranial MRI Paired/unpaired
translation

Removed/added tumours during image
translation can lead to misdiagnosis.

Data curation

Yang et al. (2018a) DAGAN MICCAI 2013
grand
challenge
dataset

Cranial MRI Image
reconstruction

Fast GAN compressed sensing MRI
reconstruction outperformed conventional
methods.

Kim et al. (2018a) pix2pix-based BRATS
(Menze et al.,
2014)

Cranial MRI Reconstruction/
super-resolution

Information transfer between different contrast
MRI, effective pretraining/fine-tuning.

Hognon et al.
(2019)

CycleGAN,
pix2pix

BRATS
(Menze et al.,
2014),
BrainWeb
phantom
(Cocosco
et al., 1997)

Cranial MRI Paired/unpaired
translation,
normalisation

CycleGAN translation to BrainWeb reference
image, pix2pix back-translation to source.

Modanwal et al.
(2019)

CycleGAN Private Breast MRI Unpaired translation Standardising DCE-MRI across scanners,
anatomy preserving mutual information loss.

You et al. (2019) CycleGAN-based Mayo Low
Dose CT
(AAPM,
2016)

Abdominal CT Super-resolution Joint constraints to Wasserstein loss for
structural preservation. Evaluated by 3
radiologists.

Gu et al. (2020) MedSRGAN LUNA16
(Setio et al.,
2017)

MRI/thoracic CT Super-resolution Residual Whole Map Attention Network
(RWMAN) in G. Evaluated by 5 radiologists.

Vu et al. (2020b) WGAN-GP-based k-Wave
toolbox
(Treeby and
Cox, 2010)

Photoacoustic CT
(PACT)

Paired translation U-Net & WGAN-GP based generator for artifact
removal. Evaluated via SSIM, PSNR.

Koike et al. (2020) CycleGAN Private Head/neck CT Unpaired translation Metal artifact reduction via CT-to-CT
translation, evaluated via radiotherapy dose
accuracy.

Wei et al. (2020) WGAN-GP-
inspired

Private Chest CT Paired translation CT normalisation of dose/slice thickness.
Evaluated via Radiomics Feature Variability.

Shahidi (2021) WA-SRGAN BreakHis
(Benhammou
et al., 2020),
Camelyon
(Litjens
et al., 2018)

Breast/lymph node
histopathology

Super-resolution Wide residual blocks, self-attention SRGAN for
improved robustness & resolution

Li et al. (2021b) SingleGAN-based
(Yu et al.,
2018b)

Private Spleen/colorectal CT Unpaired translation Multi-centre (4) CT normalisation. Evaluated
via cross-centre radiomics features variation.
Short/long-term survivor CLF improvement.

Synthetic data assessment

Kazuhiro et al.
(2018)

DCGAN Private Cranial MRI Noise-to-image
synthesis

Feasibility study for brain MRI synthesis
evaluated by 7 radiologists.

Han et al. (2018) DCGAN, WGAN BRATS 2016
(Menze et al.,
2014)

Cranial MRI Noise-to-image
synthesis

128 × 128 brain MRI synthesis evaluated by
one expert physician.

Chuquicusma et al.
(2018)

DCGAN LIDC-IDRI
(Armato III
et al., 2011)

Thoracic CT Noise-to-image
synthesis

Malignant/benign lung nodule ROI generation
evaluated by two radiologists.

Yu et al. (2019) Ea-GAN BRATS 2015
(Menze et al.,
2014), IXI
(IXI Dataset,
2007)

Cranial MRI Paired
image-to-image
translation

Loss based on edge maps of synthetic images.
Evaluated via PSNR, NMSE, SSIM.

Korkinof et al.
(2020)

PGGAN Private Full-field digital
MMG

Noise-to-image
synthesis

1280 × 1024 MMG synthesis from > 106

image dataset. Evaluated by 55 radiologists.

Levine et al. (2020) PGGAN, VAE,
ESRGAN

TCGA
(Grossman
et al., 2016),
OVCARE
archive

Ovarian
Histopathology

Noise-to-image
synthesis

1024 × 1024 whole slide synthesis. Evaluated
via FID and by 15 pathologists (9 certified)
13
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Fig. 7. Visual example of a GAN in a federated learning setup with a central generator trying to generate realistic samples that fool all of the discriminators, which are distributed
across clinical centres as in Chang et al. (2020b,a). Once trained, the generator can produce training data for a downstream task model (e.g., segmentation, detection, classification).
As depicted in blue colour, we suggest to extend the federated learning setup by adding ‘Noise’ to the gradients providing a differential privacy guarantee. This reduces the possibility
of reconstruction of specific records of the training data (i.e. images of a specific patient) by someone with access to the trained GAN model (i.e. to the generator) or by someone
intercepting the synthetic images while they are transferred from the central generator to the centres during training.
be trained on sensitive patient data to generate synthetic training data.
The technical, legal, and ethical constraints for sharing de-identified
synthetic data are typically less restrictive than for real patient data.
Such generated data can be used instead of the real patient data to
train models on disease detection, segmentation, or prognosis.

For instance, Chang et al. (2020b,a) proposed the Distributed Asyn-
chronized Discriminator GAN (AsynDGAN), which consists of multiple
discriminators deployed inside various medical centres and one central
generator deployed outside the medical centres. The generator never
needs to see the private patient data, as it learns by receiving the
gradient updates of each of the discriminators. The discriminators are
trained to differentiate images of their medical centre from synthetic
images received from the central generator. After training AsynDGAN,
its generator is used and evaluated based on its ability to provide
a rich training set of images to successfully train a segmentation
model. AsynDGAN is evaluated on MRI brain tumour segmentation
and cell nuclei segmentation. The segmentation models trained only on
AsynDGAN-generated data achieves a competitive performance when
compared to segmentation models trained on the entire dataset of
real data. Notably, models trained on AsynDGAN-generated data out-
perform models trained on local data from only one of the medical
centres. To our best knowledge, AsynDGAN is the only distributed
GAN applied to cancer imaging to date. Therefore, we promote further
research in this line to fully exploit the potential of privacy-preservation
using distributed GANs. As demonstrated in Fig. 7 and suggested in
Fig. 1(f), for maximal privacy preservation we recommend exploring
methods that combine privacy during training (e.g., federated GANs)
with privacy after training (e.g., differentially-private GANs), the latter
being described in the following section.

4.2.2. Differentially-private data generation
Shin et al. (2018a) train a GAN to generate brain tumour images

and highlight the usefulness of their method for anonymisation, as their
synthetic data cannot be attributed to a single patient but rather only
to an instantiation of the training population. However, it is to be
scrutinised whether such synthetic samples are indeed fully private, as,
given a careful analysis of the GAN model and/or its generated samples,
a risk of possible reconstruction of part of the GAN training data
exists (Papernot et al., 2016). For example, Chen et al. (2020a) propose
a GAN for model inversion (MI) attacks, which aim at reconstructing
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the training data from a target model’s parameters. A potential solution
to avoid training data reconstruction is highlighted by Xie et al. (2018),
who propose the Differentially Private Generative Adversarial Network
(DPGAN). In Differential Privacy (DP) (Dwork, 2006) the parameters
(𝜀, 𝛿) denote the privacy budget (Torfi et al., 2020), where 𝜀 measures
the privacy loss and 𝛿 represents the probability that a range of outputs
with a privacy loss > 𝜀 exists.17 Hence, the smaller the parameters (𝜀, 𝛿)
for a given model, the less effect a single sample in the training data has
on model output. The less effect of such a single sample, the stronger
is the confidence in the privacy of the model to not reveal samples of
the training data.

Examples of GANs with differential privacy guarantees. In DPGAN noise
is added to the model’s gradients during training to ensure training
data privacy. Extending on the concept of DPGAN, Jordon et al. (2018)
train a GAN coined PATE-GAN based on the Private Aggregation of
Teacher Ensembles (PATE) framework (Papernot et al., 2016, 2018). In
the PATE framework, a student model learns from various unpublished
teacher models each trained on data subsets. The student model cannot
access an individual teacher model nor its training data. PATE-GAN
consists of 𝑘 discriminator teachers, 𝑇1,… , 𝑇𝑘, and a student discrimi-
nator 𝑆 that backpropagates its loss back into the generator. This limits
the effect of any individual sample in PATE-GAN’s training. In a (𝜀 =
1, 𝛿 = 10−5)-DP setting, classification models trained on PATE-GAN’s
synthetic data achieves competitive performances e.g. on a non-imaging
cervical cancer dataset (Fernandes et al., 2017) compared to an upper
bound vanilla GAN baseline without DP.

On the same dataset, Torfi et al. (2020) achieve competitive results
using a Rényi Differential Privacy and Convolutional Generative Ad-
versarial Networks (RDP-CGAN) under an equally strong (𝜀 = 1, 𝛿 =
10−5)-DP setting.

For the generation of biomedical participant data in clinical tri-
als, Beaulieu-Jones et al. (2019) apply an AC-GAN under a (𝜀 = 3.5, 𝛿 =

17 For example, if an identical model 𝑀 is trained two times, once with
training data 𝐷 resulting in 𝑀𝐷 and once with marginally different training
data 𝐷′ resulting in 𝑀𝐷′ , it is (𝜀)-DP if the following holds true: For any
possible output 𝑥, the output probability for 𝑥 of model 𝑀𝐷 differs no more
than 𝑒𝑥𝑝(𝜀) from the output probability for 𝑥 of 𝑀 .
𝐷′
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10−5)-DP setting based on Gaussian noise added to AC-GAN’s gradients
during training.

Bae et al. (2020) propose AnomiGAN to anonymise private medical
data via some degree of output randomness during inference. This
randomness of the generator is achieved by randomly adding, for
each layer, one of its separately stored training variances. AnomiGAN
achieves competitive results on a non-imaging breast cancer dataset and
a non-imaging prostate cancer for any of the reported privacy parameter
values 𝜀 ∈ [0.0, 0.5] compared to DP, where Laplacian noise is added to
amples.

utlook on synthetic cancer image privacy. Despite the above efforts,
P in GANs has only been applied to non-imaging cancer data which

ndicates research potential for extending these methods reliably to
ancer imaging data. According to Stadler et al. (2021), using synthetic
ata generated under DP can protect outliers in the original data from
inkage attacks, but likely also reduces the statistical signal of these
riginal data points, which can result in lower utility of the synthetic
ata. Apart from this privacy-utility tradeoff, it may not be readily
ontrollable/predictable which original data features are preserved and
hich omitted in the synthetic datasets (Stadler et al., 2021). In fields

uch as cancer imaging where patient privacy is critical, desirable
rivacy-utility tradeoffs need to be defined and thoroughly evaluated to
nable trust, shareability, and usefulness of synthetic data. Consensus
s yet to be found as to how privacy preservation in GAN-generated
ata can be evaluated and verified in the research community and in
linical practice. Promising approaches include methods that define a
rivacy gain/loss for synthetic samples (Stadler et al., 2021; Yoon et al.,
020). Yoon et al. (2020), for instance, define and backpropagate an
dentifiability loss to the generator to synthesis anonymised electronic
ealth records (EHRs). The identifiability loss is based on the notion
hat the minimum weighted euclidean distance between two patient
ecords from two different patients can serve as a desirable anonymisa-
ion target for synthetic data. Designing or extending reliable methods
nd metrics for standardised quantitative evaluation of patient privacy
reservation in synthetic medical images is a line of research that we
all attention to.

.2.3. Obfuscation of identifying patient features in images
If the removal of all sensitive patient information within a cancer

maging dataset allows for sharing such datasets, then GANs can be
sed to obfuscate such sensitive data. As indicated by Fig. 1(g), GANs
an learn to remove the features from the imaging data that could
eveal a patient’s identity, e.g. by learning to apply image inpainting
o pixel or voxel data of burned in image annotations or of identifying
ody parts. Such identifying body parts could be the facial features
f a patient, as was shown by Schwarz et al. (2019) on the example
f cranial MRI. Numerous studies exist where GANs accomplish facial
eature de-identification on non-medical imaging modalities (Wu et al.,
018b; Hukkelås et al., 2019; Li and Lin, 2019; Maximov et al., 2020).
or medical imaging modalities, GANs have yet to prove themselves
s tool of choice for anatomical and facial feature de-identification
gainst common standards (Ségonne et al., 2004; Bischoff-Grethe et al.,
007; Schimke et al., 2011; Milchenko and Marcus, 2013) with solid
aselines. These standards, however, have shown to be susceptible to
econstruction achieved by unpaired image-to-image GANs on MRI vol-
mes with high reversibility for blurred faces and partial reversibility
or removed facial features (Abramian and Eklund, 2019). Van der
oten et al. (2021) provide a first proof-of-concept for GAN-based facial

eature de-identification in 3D (1283 voxel) cranial MRI. The generator
f their conditional de-identification GAN (C-DeID-GAN) receives brain
ask, brain intensities and a convex hull of the brain MRI as input and

enerates de-identified MRI slices. C-DeID-GAN generates the entire de-
dentified brain MRI scan and, hence, may not be able to guarantee that
he generation process does not alter any of the original brain features.
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solution to this can be to only generate and replace the 2D MRI slices
or parts thereof that do contain non-pathological facial features while
retaining all other original 2D MRI slices. Presuming preservation of
medically relevant features and robustness of de-identification, GAN-
based approaches can allow for subsequent medical analysis, privacy
preserving data sharing and provision of de-identified training data.
Hence, we highlight the research potential of GANs for robust medi-
cal image de-identification e.g. via image inpainting GANs that have
already been successful applied to other tasks in cancer imaging such
as synthetic lesion inpainting into mammograms (Wu et al., 2018a;
Becker et al., 2019) and lung CT scans (Mirsky et al., 2019). Also, GAN-
based patient feature de-identification methods that are adjustable
and trainable to remain quantifiably robust against adversarial image
reconstruction are a research line of interest.

4.2.4. Identifying patient features in latent representations
In line with Fig. 1(g), a further example for privacy preserving

methods are autoencoders18 that learn patient identity-specific features
and obfuscate such features when encoding input images into latent
space representation. Such an identity-obfuscated representation can
be used as input into further models (classification, segmentation, etc.)
or decoded back into a de-identified image. Adversarial training has
been shown to be effective for learning a privacy-preserving encoding
function, where a discriminator tries to succeed at classifying the
private attribute from the encoded data (Raval et al., 2017; Wu et al.,
2018c; Yang et al., 2018c; Pittaluga et al., 2019). Apart from being
trained via the backpropagated adversarial loss, the encoder needs
at least one further utility training objective to learn to generate
useful representations, such as denoising (Vincent et al., 2008) or
classification of a second attribute (e.g., facial expressions Chen et al.,
2018a; Oleszkiewicz et al., 2018). Siamese Neural Networks (Bromley
et al., 1994) such as the Siamese Generative Adversarial Privatizer
(SGAP) (Oleszkiewicz et al., 2018) have been used effectively for
adversarial training of an identity-obfuscated representation encoder.
In SGAP, two weight-sharing Siamese Discriminators are trained using
a distance based loss function to learn to classify whether a pair of
images belongs to the same person. As visualised in Fig. 8, Kim et al.
(2019a) follow a similar approach with the goal of de-identifying and
segmenting brain MRI data. Two feature maps are encoded from a pair
of MRI scans and fed into a Siamese Discriminator that evaluates via
binary classification whether the two feature maps are from the same
patient. The generated feature maps are also fed into a segmentation
model that backpropagates a Dice loss (Sudre et al., 2017) to train the
encoder. Fig. 8 illustrates the scenario where the encoder is deployed in
a trusted setting after training, e.g. in a clinical centre, and the segmen-
tation model is deployed in an untrusted setting, e.g. outside the clinical
centre at a third party. The encoder shares the identity-obfuscated
feature maps with the external segmentation model without the need
of transferring the sensitive patient data outside the clinical centre.
This motivates further research into adversarial identity-obfuscated
encoding methods e.g., to allow sharing and usage of cancer imaging
data representations and models across clinical centres.

4.2.5. Adversarial attacks putting patients at risk
Examples of GAN-based tampering with cancer imaging data. For in-
stance, Mirsky et al. (2019) added and removed evidence of cancer
in lung CT scans. Of two identical deep 3D convolutional cGANs
(based on pix2pix), one was used to inject (diameter ≥ 10 mm) and
the other to remove (diameter < 3 mm) multiple solitary pulmonary
nodules indicating lung cancer. The GANs were trained on 888 CT scans
from the Lung Image Database Consortium image collection (LIDC-
IDRI) dataset (Armato III et al., 2011) and inpainted on an extracted

18 For example adversarial autoencoders (Makhzani et al., 2015; Creswell
et al., 2018), which adversarially learn latent space representations that match
a chosen prior distribution.
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Fig. 8. Example of an autoencoder architecture trained via adversarial loss to learn privacy-preserving feature maps as in Kim et al. (2019a) and/or a privacy-preserving latent
representation 𝑧. Once trained and after thorough periodic manual verification of its ability to preserve privacy, the representation 𝑧 and/or the feature maps can be sent to third
parties outside the clinical centre for model training or inference requests.
region of interest of 323 voxel cuboid shape. The trained GANs can
be autonomously executed by malware and are capable of ingesting
nodules into standard CT scans that are realistic enough to deceive both
radiologists and AI disease detection systems. Three radiologists with
2, 5 and 7 years of experience analysed 70 tampered and 30 authentic
CT scans. Spending on average 10 min on each scan, the radiologists
diagnosed 99% of the scans with added nodules as malignant and 94%
of the scans with removed nodules as healthy. After disclosing the
presence of the attack to the radiologists, the percentages dropped to
60% and 87%, respectively (Mirsky et al., 2019).

Becker et al. (2019) trained a CycleGAN (Zhu et al., 2017) on 680
down-scaled mammograms from the Breast Cancer Digital Repository
(BCDR) (Lopez et al., 2012) and the INbreast (Moreira et al., 2012)
datasets to generate suspicious features and was able to remove or
inject them into existing mammograms. They showed that their ap-
proach can fool radiologists at lower pixel dimensions (i.e. 256 × 256)
demonstrating that alterations in patient images by a malicious at-
tacker can remain undetected by clinicians, influence the diagnosis, and
potentially harm the patient (Becker et al., 2019).

Defending adversarial attacks. In regard to fooling diagnostic models,
one measure to circumvent adversarial attacks is to increase model
robustness against adversarial examples (Madry et al., 2017), as sug-
gested by Fig. 1(h). Augmenting the robustness has been shown to be
effective for medical imaging segmentation models (He et al., 2019;
Park et al., 2020), lung nodule detection models (Liu et al., 2020b;
Paul et al., 2020), skin cancer recognition (Huq and Pervin, 2020;
Hirano et al., 2021), and classification of histopathology images of
lymph node sections with metastatic tissue (Wetstein et al., 2020). Liu
et al. (2020b) provide model robustness by adding adversarial chest
CT examples to the training data. These adversarial examples are
composed of synthetic nodules that are generated by a 3D convolutional
variational encoder trained in conjunction with a WGAN-GP (Gulrajani
et al., 2017) discriminator. To further enhance robustness, Projected
Gradient Descent (PGD) (Madry et al., 2017) is applied to find and
protect against noise patterns for which the detector network is prone
to produce over-confident false predictions (Liu et al., 2020b).

Apart from being the adversary, GANs can also detect adversarial
attacks and thus are applicable as security counter-measure enabling
attack anticipation, early warning, monitoring and mitigation. Defence-
GAN, for example, learns the distribution of non-tampered images and
can generate a close output to an inference input image that does not
contain adversarial modifications (Samangouei et al., 2018).

We highlight the research potential in adversarial attacks and ex-
amples, alongside prospective GAN detection and defence mechanisms
that can, as elaborated, highly impact the field of cancer imaging.
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Apart from the image injection of entire tumours and the generation
of adversarial radiomics examples, a further attack vector to consider
in future studies is the perturbation of the specific imaging features
within an image that are used to compute radiomics features.

4.3. Data annotation and segmentation challenges

4.3.1. Annotation-specific issues in cancer imaging
Missing annotations in datasets. In cancer imaging, not only the avail-
ability of large datasets is rare, but also the availability of labels,
annotations, and segmentation masks within such datasets. The gen-
eration and evaluation of such labels, annotations, and segmentation
masks is a task for which trained health professionals (radiologists,
pathologists) are needed to ensure validity and credibility (Hosny et al.,
2018; Bi et al., 2019). Nonetheless, radiologist annotations of large
datasets can take years to generate (Bi et al., 2019). The tasks of
labelling and annotating (e.g., bounding boxes, segmentation masks,
textual comments) cancer imaging data is, hence, expensive both in
time and cost, especially considering the large amount of data needed
to train deep learning models.

Intra/inter-observer annotation variability. This cancer imaging chal-
lenge is further exacerbated by the high intra- and inter-observer
variability between both pathologists (Gilles et al., 2008; Dimitriou
et al., 2018; Martin et al., 2018; Klaver et al., 2020) and radiologists (El-
more et al., 1994; Hopper et al., 1996; Hadjiiski et al., 2012; Teh et al.,
2017; Wilson et al., 2018; Woo et al., 2020; Brady, 2017) in interpreting
cancer images across imaging modalities, affected organs, and cancer
types. Automated annotation processes based on deep learning models
allow to produce reproducible and standardised results in each image
analysis. In one of most common case where the annotations consist
of a segmentation mask, reliably segmenting both tumour and non-
tumour tissues is crucial for disease analysis, biopsy, and subsequent
intervention and treatment (Hosny et al., 2018; Huynh et al., 2020),
the latter being further discussed in Section 4.5. For example, automatic
tumour segmentation models are useful in the context of radiotherapy
treatment planning (Cuocolo et al., 2020).

Human biases in cancer image annotation. During routine tasks, such as
medical image analysis, humans are prone to account for only a few of
many relevant qualitative image features. On the contrary, the strength
of GANs and deep learning models is the evaluation of large numbers
of multi-dimensional image features alongside their (non-linear) inter-
relationships and combined importance (Hosny et al., 2018). Deep
learning models are likely to react to unexpected and subtle patterns
in the imaging data (e.g., anomalies, hidden comorbidities, etc.) that
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Table 3
Overview of adversarially-trained models applied/applicable to data access and privacy cancer imaging challenges. Publications are clustered by section and ordered by year in
ascending order.

Publication Method Dataset Modality Task Highlights

Decentralised GANs

Chang et al.
(2020b,a)
AsynDGAN

AsynDGAN,
PatchGAN (Isola
et al., 2017)

BRATS 2018
(Bakas et al.,
2018),
Multi-Organ
(Kumar et al.,
2017)

Cranial MRI, nuclei
images

Paired translation Mask-to-image, central G gets distributed Ds’
gradients, synthetic only-trained segmentation.

Differential-privacy GANs

Xie et al. (2018) DPGAN MNIST (LeCun
et al., 1998),
MIMIC-III
(Johnson et al.,
2016)

MNIST images, EHRs Noise-to-image
synthesis

Noisy gradients during training ensure DP
guarantee.

Jordon et al. (2018) PATE-GAN Cervical cancer
(Fernandes
et al., 2017)

[non-imaging] Medical
records

Data synthesis DP via PATE framework. G gradient from
student D that learns from teacher Ds.

Beaulieu-Jones et al.
(2019)

AC-GAN MIMIC-III
(Johnson et al.,
2016)

[non-imaging] EHRs,
clinical trial data

Class-conditional
synthesis

DP via Gaussian noise added to AC-GAN
gradient. Treatment arm (standard/intensive) as
condition.

Bae et al. (2020) AnomiGAN UCI b & Prostate
(Blake, 1998)

[non-imaging] Cell
nuclei tabular data

Multi-class-conditional
synthesis, classification

DP via training variances added to G’s layers in
inference. Real data row as G’s condition.

Torfi et al. (2020) RDP-CGAN Cervical cancer
(Fernandes
et al., 2017),
MIMIC-III
(Johnson et al.,
2016)

[non-imaging] Medical
records, EHRs

Data synthesis DP GAN based on Rényi divergence. Allows to
track a DP loss.

Patient de-identification

Abramian and
Eklund (2019)

CycleGAN IXI (IXI Dataset,
2007)

Cranial MRI Unpaired translation Reconstruction of blurring/removed faces in
MRI shows privacy vulnerability.

Kim et al. (2019a) PrivacyNet PPMI (Marek
et al., 2011)

Cranial MRI Adversarial training,
segmentation

Segmenting de-identified representations
learned via same-person CLF by Siamese Ds.

Van der Goten et al.
(2021)

C-DeID-GAN ADNI (Wyman
et al., 2013;
Weiner et al.,
2017), OASIS-3
(LaMontagne
et al., 2019)

Cranial MRI Paired translation Face de-id. Concatenated convex hull, brain
mask & brain volumes as G & D inputs.

Adversarial data tampering

Mirsky et al. (2019) pix2pix-based
CT-GAN

LIDC-IDRI
(Armato III
et al., 2011)

Lung CT Image inpainting Injected/removed lung nodules in CT fool
radiologists and AI models.

Becker et al. (2019) CycleGAN BCDR (Lopez
et al., 2012),
INbreast
(Moreira et al.,
2012)

Digital/Film MMG Unpaired
image-to-image
translation

Suspicious features can be learned and
injected/removed from MMG.

Liu et al. (2020b) Variational Encoder,
WGAN-GP

LUNA (Setio
et al., 2017),
NLST (NLST
Research Team,
2011)

Lung CT Noise-to-image
synthesis

Robustness via adversarial data augmentation,
reduce false positives in nodule detection.
medical practitioners are prone to overlook for instance due to any of
multiple existing cognitive biases (e.g., anchoring bias, framing bias,
availability bias) (Brady, 2017) or inattentional blindness (Drew et al.,
2013). Inattentional blindness occurs when radiologists (or pathologist)
have a substantial amount of their attention drawn to a specific task,
such as finding an expected pattern (e.g., a lung nodule) in the imaging
data, that they become blind to other patterns in that data.

Implications of low segmentation model robustness. As for the common
annotation task of segmentation mask delineation, automated seg-
mentation models can minimise the risk of the aforesaid human bi-
ases. However, to date, segmentation models have difficulties when
confronted with intricate segmentation problems including domain
shifts, rare diseases with limited sample size, or small lesion and
17
metastasis segmentation. In this sense, the performance of many auto-
mated and semi-automated clinical segmentation models has been sub-
optimal (Sharma and Aggarwal, 2010). This emphasises the need for
expensive manual verification of segmentation model results by human
experts (Hosny et al., 2018). The challenge of training automated mod-
els for difficult segmentation problems can be approached by applying
methods for learning discriminative features without explicit labels.
Such methods include GANs and variational autoencoders (Kingma
and Welling, 2013) capable of automating robust segmentation (Hosny
et al., 2018).

In addition, segmented regions of interest (ROI) are commonly used
to extract quantitative imaging features with diagnostic value such as
radiomics features. The latter are used to detect and monitor tumours

https://github.com/tommy-qichang/AsynDGAN
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Table 4
Overview of adversarial training and GAN-based approaches applied to segmentation in cancer imaging tasks. Publications are clustered by organ type and ordered by year in
ascending order. ‘*’ indicates that the metrics are only available in figures and the baseline numbers are lower than using GANs in the corresponding paper. ‘n.a.’ indicates that
there was no comparison with a specific baseline with the reason for this being indicated in the ‘Highlights’ column.

Publication Method Dataset Modality Task Metric w/o GAN
(Baseline)

Metric with
GAN
(Baseline+𝛥)

Highlights

Head/Brain/Neck

Kamnitsas et al.
(2017)
deepmedic

deepmedic Private MRI Adversarial
training

Dice: 0.60
Recall: 0.56
Precision: 0.70

0.63, 0.59,
0.72

Multi-domain (MPRAGE, FLAIR, T2, Proton Density,
and Gradient-Echo) segmentation with domain
discriminator loss.

Rezaei et al.
(2017)

pix2pix,
MarkovianGAN
(Li and Wand,
2016)

BRATS 2017
(Menze et al.,
2014; Bakas
et al., 2018,
2017)

MRI Adversarial
training

Dice: n.a. 0.80 D detects G-generated masks for high/low grade
glioma segmentation. Benchmarked in a challenge,
thus missing metric w/o GAN.

Mok and Chung
(2018)

CB-GAN BRATS (Menze
et al., 2014)

MRI Data
augmentation

Dice: 0.79 0.84 Coarse-to-fine G captures training set manifold,
generates generic samples in HGG & LGG
segmentation.

Yu et al. (2018a) pix2pix-based BRATS (Menze
et al., 2014)

MRI Data
augmentation

Dice: 0.67 0.68 Cross-modal paired FLAIR to T1 translation, training
tumour segmentation with T1+real/synthetic FLAIR.
Baseline: only-T1 training

Shin et al.
(2018a)

pix2pix BRATS (Menze
et al., 2014)

MRI Data
augmentation

Dice: 0.81 0.81 Training on synthetic, before fine-tuning on 10% of
the real data.

Xue et al. (2018) SegAN BRATS (Menze
et al., 2014)

MRI Adversarial
training

Dice: 0.80 0.85 Paired image-to-mask. New multi-scale loss: L1 of D
representations between GT- & prediction-masked
input MRI. U-Net baseline.

Giacomello et al.
(2020)

SegAN-CAT BRATS (Menze
et al., 2014)

MRI Adversarial
training

Dice: 0.71 0.86 Paired image-to-mask. Combined dice loss &
multi-scale loss using concatenation on channel axis
instead of masking. SegAN baseline.

Kim et al.
(2020)
BrainTumor

GAN BRATS (Bakas
et al., 2018;
Menze et al.,
2014)

MRI Image
inpainting,
data
augmentation

Dice: 0.57 0.59 Simplifying tumour features into concentric circle &
grade mask to inpaint.

Hu et al. (2020) UNet-based GAN
segmenter

Private CT, PET Adversarial
training

Dice: 0.69 0.71 Spatial context information & hierarchical features.
Nasal-type lymphoma segmentation with uncertainty
estimation.

Qasim et al.
(2020)

SPADE-based BRATS (Bakas
et al., 2018),
ISIC (Codella
et al., 2019)

MRI,
dermoscopy

Cross-domain
translation

Dice: * B:0.66
S:0.62

Brain and skin segmentation. Frozen segmenter as
3rd player in GAN to condition on local apart from
global information.

Foroozandeh and
Eklund (2020)

PGGAN, SPADE BRATS (Menze
et al., 2014)

MRI Data
augmentation

Av. dice
error(%): 16.80

16.18 Sequential noise-to-mask and paired mask-to-image
translation to synthesise labelled tumour images.

Cirillo et al.
(2020)

vox2vox: 3D
pix2pix

BRATS (Menze
et al., 2014)

MRI Adversarial
training

Dice: 0.87 0.93 3D adversarial training to enforce segmentation
results to look realistic.

Han et al.
(2021)

Symmetric
adaptation
network

BRATS (Menze
et al., 2014)

MRI Cross-domain
translation

Dice: 0.48 0.67 Simultaneous source/target (T2 to other sequences)
translation and segmentation. Compared to
CycleGAN baseline.

Alshehhi and
Alshehhi (2021)

U-Net based
GAN segmenter

BRATS (Menze
et al., 2014)

MRI Adversarial
training

Dice: n.a. n.a. Quantitative comparison of 7 active learning
acquisition functions using existing adversarial
networks (including SegAN, SegAN-CAT)

Breast

Singh et al.
(2018)

pix2pix DDSM (Heath
et al., 2001)

Film MMG Adversarial
training

Dice: 0.86 0.94 Adversarial loss to make automated segmentation
close to manual masks for breast mass segmentation.

Caballo et al.
(2020)

DCGAN (Radford
et al., 2015)

Private CT Data
augmentation

Dice: 0.70 0.93 GAN based data augmentation; Validated by
matching extracted radiomics features.

Negi et al.
(2020)

GAN, WGAN-
RDA-UNET

Private Ultrasound Adversarial
training

Dice: 0.85 0.88 Outperforms state-of-the-art using
Residual-Dilated-Attention-Gate-UNet and WGAN for
lesion segmentation.

Abdominal

Huo et al.
(2018)

Conditional
PatchGAN

Private MRI Adversarial
training

Dice: 0.93 0.94 Adversarial loss as segmentation post-processing for
spleen segmentation. ResNet baseline.

Chen et al.
(2019)

DC-FCN-based
GAN segmenter

LiTS (Bilic et al.,
2019)

CT Adversarial
training

Dice: 0.62 0.68 Cascaded framework with densely connected
adversarial training. DC-Fully connected network
baseline.

(continued on next page)
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https://github.com/KSH0660/BrainTumor
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Table 4 (continued).
Publication Method Dataset Modality Task Metric w/o GAN

(Baseline)
Metric with
GAN
(Baseline+𝛥)

Highlights

Sandfort et al.
(2019)

CycleGAN NIH (Prior et al.,
2017), Decathlon
(Simpson et al.,
2019),
DeepLesion (Yan
et al., 2018)

CT Cross-domain
translation

Dice (od): 0.92,
0.10

0.93, 0.75 Contrast enhanced to non-enhanced translation to
improve out-of-distribution (od) segmentation.

Xiao et al.
(2019)

Radiomics-
guided
GAN

Private MRI Adversarial
training

Dice: 0.72 0.92 Radiomics-guided adversarial mechanism to map
relationship between contrast and non-contrast
images. U-Net baseline comparison.

Oliveira (2020b) pix2pix, SPADE LiTS (Bilic et al.,
2019)

CT Image
inpainting

Dice: 0.58 0.61 Realistic lesion inpainting in CT slices to provide
controllable set of training samples.

Chest and lungs

Jiang et al.
(2018)

CycleGAN-based NSCLC (Prior
et al., 2017)

CT, MRI Cross-domain
translation

Dice: 0.66 0.80 Tumour-aware loss for unsupervised cross-domain
adaptation compared with standard cycleGAN
benchmark.

Jin et al. (2018) cGAN LIDC (Armato III
et al., 2011)

CT Image
inpainting

Dice: 0.96 0.99 Generated lung nodules to improve segmentation
robustness; A novel multi-mask reconstruction loss.

Dong et al.
(2019)

UNet-based GAN
segmenter

AAPM Challenge
(Yang et al.,
2018b)

CT Adversarial
training

Dice: 0.97 (l),
0.83 (sc), 0.71
(o), 0.85 (h)

0.97, 0.90,
0.75, 0.87

Adversarial training to discriminate manual and
automated segmentation of lungs, spinal cord,
oesophagus, heart.

Tang et al.
(2019)
XLSor

MUNIT (Huang
et al., 2018)

JSRT (Shiraishi
et al., 2000),
Montgomery
(Jaeger et al.,
2013)

Chest X-ray Lung
segmentation

Dice: 0.97 0.98 Unpaired normal-to-abnormal (pathological)
translation. Synthetic data augmentation for lung
segmentation.

Shi et al. (2020) AUGAN LIDC-IDRI
(Armato III
et al., 2011)

CT Adversarial
training

Dice: 0.82 0.85 A deep layer aggregation based on U-Net++.

Munawar et al.
(2020)

Unet-based GAN
segmenter

JSRT (Shiraishi
et al., 2000),
Montgomery &
Shenzhen
(Jaeger et al.,
2013)

Chest X-ray Adversarial
training

Dice: 0.96 0.97 Adversarial training to discriminate manual and
automated segmentation.

Prostate

Kohl et al.
(2017)

UNet-based GAN
segmenter

Private MRI Adversarial
training

Dice: 0.35 0.41 Adversarial loss to discriminate manual and
automated segmentation.

Grall et al.
(2019)
ProstatecGAN

pix2pix Private MRI Adversarial
training

Dice: 0.67
(ADC), 0.74
(DWI), 0.67 (T2)

0.73, 0.79,
0.74

Paired prostate image-to-mask translation.
Investigated the robustness of the pix2pix against
noise.

Nie and Shen
(2020)

GAN PROMISE12
(Litjens et al.,
2014)

MRI Adversarial
confidence
learning

Dice: 88.25 (b),
90.11 (m), 86.67
(a)

89.52,
90.97, 88.20

Difficulty-aware mechanism to alleviate the effect of
easy samples during training. b = base, m = middle,
a = apex.

Zhang et al.
(2020)

PGGAN Private CT Data
augmentation

Dice: 0.85 0.90 Semi-supervised training using both annotated and
un-annotated data. Synthetic data augmentation
using PGGAN.

Cem Birbiri
et al. (2020)

pix2pix,
CycleGAN

PROMISE12
(Litjens et al.,
2014)

MRI Data
augmentation

Dice: 0.72 0.76 Compared the performance of pix2pix, U-Net, and
CycleGAN.

Chaitanya et al.
(2021)

cGAN,
DCGAN-based D

ACDC (Bernard
et al., 2018),
Decathlon
(Simpson et al.,
2019)

MRI, CT Data
augmentation

Dice: 0.40 0.53 GAN data augmentation for intensity and shape
variations. Tested on cardiac, prostate, and pancreas
datasets.

Colorectal

Liu et al.
(2019a)

GAN, LAGAN Private CT Adversarial
training

Dice: 0.87 0.92 Automatic post-processing to refine the segmentation
of deep networks.

Poorneshwaran
et al. (2019)

pix2pix CVC-clinic
(Vázquez et al.,
2017)

Endoscopy Adversarial
training

Dice: n.a. 0.88 Adversarial learning to make automatic segmentation
close to manual. Ablations were compared instead of
baselines.

Xie et al. (2020) MI2GAN,
CycleGAN

CVC-clinic
(Vázquez et al.,
2017),
ETIS-Larib (Silva
et al., 2014)

Endoscopy Cross-domain
translation

Dice: 0.66 0.73 Content features and domain information decoupling
and maximising the mutual information.

(continued on next page)
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Table 4 (continued).
Publication Method Dataset Modality Task Metric w/o GAN

(Baseline)
Metric with
GAN
(Baseline+𝛥)

Highlights

Pathology

Pandey et al.
(2020)

GAN & cGAN Kaggle (Ljosa
et al., 2012a)

Histopathol-
ogy

Data
augmentation

Dice: 0.79 0.83 Two-stage GAN to generate masks and conditioned
synthetic images.

Other

Chi et al. (2018) pix2pix ISBI ISIC
(Codella et al.,
2018)

Dermoscopy Data
augmentation

Dice: 0.85 0.84 Similar performance replacing half of real with
synthetic data. Colour labels as lesion specific
characteristics.

Abhishek and
Hamarneh
(2019)

pix2pix ISBI ISIC
(Codella et al.,
2018)

Dermoscopy Data
augmentation

Dice: 0.77 0.81 Generate new lesion images given any arbitrary
mask.

Sarker et al.
(2019)

MobileGAN ISBI ISIC
(Codella et al.,
2018)

Dermoscopy Adversarial
training

Dice: 0.76 0.91 Lightweight and efficient GAN model with position
and channel attention. Dice was compared to a
U-Net baseline.

Zaman et al.
(2020)

pix2pix Private Ultrasound Data
augmentation

Dice: * ≈ 𝛥+0.05 Recommendations on standard data augmentation
approaches. Bone surface segmentation. pix2pix
based discriminator.
(e.g., lymphoma Kang et al., 2018), biomarkers, and tumour-specific
phenotypic attributes (Lambin et al., 2012; Parmar et al., 2015). The
accuracy and success of such commonly applied diagnostic image fea-
ture quantification methods, hence, depends on accurate and robust
ROI segmentations. Segmentation models need to be able to provide
reproducibility of extracted quantitative features and biomarkers (Bi
et al., 2019) with reliably-low variation, among others, across different
scanners, CT slice thicknesses, and reconstruction kernels (Balagu-
runathan et al., 2014; Zhao et al., 2016). To this end, we promote
lines of research that use adversarial training schemes to target the
robustification of segmentation models. Progress in this open research
challenge can beneficially unlock trust, usability, and clinical adoption
of biomarker quantification methods in clinical practice.

4.3.2. GAN applications for cancer image segmentation
Table 4 summarises the collection of segmentation publications

that utilise such adversarial training approaches and GAN-based data
synthesis for cancer imaging.

In Table 4, we further report the baseline performance alongside
the performance increase attributable to applying GANs or adversarial
training for each surveyed publication. For the common Dice Score
segmentation performance metric, Fig. 10 visualises these differences.
Comparing the figure’s black identity line and the red trend line over
publications, we observe a general improvement of approximately 5
percentage points of adversarial learning methods compared to their
baselines. Fig. 11 further displays the variation in performance between
baselines and adversarial network methods for the years 2017 to 2021.
Based on visual analysis, performance gains seem to be both anatomy-
invariant and invariant to the strength of the baseline, where similar
gains are achieved for initially low (e.g., < 0.7) and high (e.g., >= 0.7)
aseline Dice scores. While Figs. 10 and 11 offer interesting quanti-
ative insights, we recommend taking potential publication bias19 into
ccount when drawing conclusions from these figures. Trends in the
resented data in these plots can be analysed holistically, however, they
re not intended to benchmark and compare individual publications
gainst each other. This is due to multiple limiting factors of such
omparisons including the differences in (a) the used baselines, (b)
rgans, (c) modalities, (d) the segmentation task and its associated
ifficulty, (e) the amount of training and testing data, (f) data and
nnotation quality, (g) pre- and post-processing methods, or (h) the
tudy’s objectives. In regard to (g), some studies may focus on other

19 Publication bias likely influences the trends observable in Figs. 10 and 11:
nly papers that show an improvement attributable to adversarial networks
ere published and therefore only such studies could be included.
20
benefits of adversarial learning methods instead of or apart from Dice
Score improvement, such as, reducing the needed training dataset size,
domain adaptation in general, protecting patient privacy with synthetic
data, or simply improving other metrics (e.g. Hausdorff distance, FID).

In the following sections, we provide a summary of the commonly
used techniques and trends in the GAN literature that address the
challenges in cancer image segmentation.

Robust quantitative imaging feature extraction. For example, Xiao et al.
(2019) addressed the challenge of robustification of segmentation mod-
els and reliable biomarker quantification. Xiao et al. (2019) provide
radiomics features as conditional input to the discriminator of their
adversarially trained liver tumour segmentation model. Their learning
procedure strives to inform the generator to create segmentations that
are specifically suitable for subsequent radiomics feature computa-
tion. Apart from adversarially training segmentation models, we also
highlight the research potential of adversarially training quantitative
imaging feature extraction models (e.g., deep learning radiomics) for
reliable application in multi-centre and multi-domain settings.

Synthetic segmentation model training data. By augmenting and varying
the training data of segmentation models, it is possible to substantially
decrease the amount of manually annotated images during training
while maintaining the performance (Foroozandeh and Eklund, 2020).
A general pipeline of such usage of GAN based generative models is
demonstrated in Fig. 9(a) and mentioned in Fig. 1(j).

Over the past few years, CycleGAN (Zhu et al., 2017) based ap-
proaches have been widely used for synthetic data generation due to
the possibility of using unpaired image sets in training, as compared
to paired image translation methods like pix2pix (Isola et al., 2017)
or SPADE (Park et al., 2019). CycleGAN based data augmentation has
been shown to be useful for segmentation model training, in particular,
for generating images with different acquisition characteristics such as
contrast enhanced MRI from non-contrast MRI (Wang et al., 2021),
cross-modality image translation between different modalities such
as CT and MRI images (Huo et al., 2018), and domain adaptation
tasks (Jiang et al., 2018). The popularity of the CycleGAN based
methods lies not only in image synthesis or domain adaptation, but also
in the inclusion of simultaneous image segmentation in its pipeline (Lee
et al., 2020).

Although pix2pix methods require paired samples, it is also a widely
used type of GAN in data augmentation for medical image segmentation
(see Table 4). Several works on segmentation have demonstrated its
effectiveness in generating synthetic medical images. By manipulating
its input, the variability of the training dataset for image segmentation

could be remarkably increased in a controlled manner (Abhishek and
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Fig. 9. Overview of cancer imaging GAN applications for detection and segmentation. (a) describes training data augmentation of downstream task models (e.g., segmentation,
detection, classification, etc.). In (b) a discriminator scrutinises the segmentations created by a segmentation model, while in (c) the discriminator enforces the model to create
domain-agnostic latent representations. (d) illustrates domain-adaptation, where the translated target domain images are used for downstream model training. In (e), the AC-
GAN (Odena et al., 2017) discriminator classifies original data. In (f), one GAN generates ROIs while another inpaints them into full-sized images. (g) uses the discriminator’s
latent space to find abnormal/outlier representations.

Fig. 10. Scatter plot illustrating the segmentation performance improvement attributable to adversarial networks for the surveyed publications. Each publication is represented
by a marker with a colour and shape encoding depicting the publication’s anatomical category. Only the publications are included that measure performance via Dice Score and
compare against a baseline, as reported in Table 4. For publications reporting multiple Dice Scores, their mean was computed and included herein. The black identity line indicates
no change between baseline and adversarial network intervention, while dots below this line represent an improvement. The red regression line depicts the trend of improvement
across publications. The author names of a few publications have been manually selected for highlighting based on the distance to the trend line.
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Table 5
Overview of adversarially-trained models applied to detection and diagnosis tasks in cancer imaging. Publications are clustered by organ type and ordered by year in ascending
rder.
Publication Method Dataset Modality Task Metric w/o GAN

(Baseline)
Metric with
GAN
(Baseline+𝛥)

Highlights

Brain

Chen et al. (2018b) VAE GAN Cam-CAN
(Shafto et al.,
2014) BRATS
(Menze et al.,
2014) ATLAS
(Liew et al.,
2018)

MRI Anomaly
detection

AUC(%): 80.0 70.0 Comparison of unsupervised outlier detection
methods.

Han et al. (2020) PGGAN BRATS (Menze
et al., 2014)

MRI Data
augmentation

Accuracy(%):
90.06

91.08 PGGAN-based augmentation method of whole
brain MRI.

Han et al. (2019c) PGGAN, SimGAN BRATS (Menze
et al., 2014)

MRI Data
augmentation

Sensitivity(%):
93.67

97.48 Two-step GAN for noise-to-image and
image-to-image data augmentation.

Benson and
Beets-Tan (2020)

GAN TCIA
(Schmainda and
Prah, 2018)

MRI Anomaly
detection

Accuracy(%):
73.48

74.96 Multi-modal MRI images as input to the GAN.

Han et al. (2019b) GAN Private MRI Data
augmentation

Sensitivity(%):
67.0

77.0 Synthesis and detection of brain metastases in
MRI with bounding boxes.

Siddiquee et al.
(2019)

Fixed-Point GAN BRATS (Menze
et al., 2014)

MRI Anomaly
detection

AUC(%): 95,
IoU:0.261

92, 0.348 Brain lesion detection and localisation with
fixed-point image-to-image translation concept.

Sun et al. (2020b) ANT-GAN BRATS 2013
(Menze et al.,
2014)

MRI Data
augmentation,
Anomaly
detection

F1-Score(%):
89.6

91.7 Abnormal to normal image translation in
cranial MRI, VGG lesion classification.

Breast

Wu et al. (2018a)
Mammo-ciGAN

ciGAN DDSM (Heath
et al., 2001)

Film MMG Data
augmentation

ROC AUC(%):
88.7

89.6 Synthetic lesion in-filling in healthy
mammograms.

Guan and Loew
(2019)

GAN DDSM (Heath
et al., 2001)

Film MMG Data
augmentation

Accuracy(%):
73.48

74.96 Generate patches containing benign and
malignant tumours.

Jendele et al.
(2019)
BreastGAN

CycleGAN BCDR (Lopez
et al., 2012),
INbreast
(Moreira et al.,
2012),
CBIS–DDSM (Lee
et al., 2016)

Digital/Film
MMG

Data
augmentation

ROC AUC(%):
83.50, F1(%):
62.53

𝛥−1.46,
𝛥+1.28

Scanned & digital mammograms evaluated
together for lesion detection.

Lee and Nishikawa
(2020)

CGAN Private Digital MMG Data
augmentation

ROC AUC(%): 57 67 Synthesising contralateral mammograms.

Wu et al. (2020) U-Net based GAN OPTIMAM
(Halling-Brown
et al., 2020)

Digital MMG Data
augmentation

ROC AUC(%):
82.9

84.6 Removed/added MMG lesions for
malignant/benign classification.

Alyafi et al. (2020) DCGAN OPTIMAM
(Halling-Brown
et al., 2020)

Digital MMG Data
augmentation

F1-Score(%):
≈90

≈96 Synthesise breast mass patches with high
diversity.

Desai et al. (2020) DCGAN DDSM (Heath
et al., 2001)

Film MMG Data
augmentation

Accuracy(%):
78.23

87.0 Synthesise full view MMGs and used them in
visual Turing test.

Muramatsu et al.
(2020)

CycleGAN DDSM (Heath
et al., 2001)

CT, Film
MMG

Data
augmentation

Accuracy(%):
79.2

81.4 CT lung nodule to MMG mass translation and
vice versa.

Swiderski et al.
(2021)

AGAN DDSM (Heath
et al., 2001)

Film MMG Data
augmentation

ROC AUC(%):
92.50

94.10 AutoencoderGAN (AGAN) augments data in
normal abnormal classification.

Kansal et al.
(2020)

DCGAN Private OCT Data
augmentation

Accuracy(%):
92.0

93.7 Synthetic Optical Coherence Tomography
(OCT) images.

Shen et al. (2021) ciGAN DDSM (Heath
et al., 2001)

Film MMG Data
augmentation

FROC-AUC(%):
15.1

17.2 Generate labelled breast mass images for
precise detection.

Pang et al. (2021) TripleGAN-based Private Ultrasound Data
augmentation

Sensitivity(%):
86.60

87.94 Semi-supervised GAN-based Radiomics model
for mass CLF.

Liver

Frid-Adar et al.
(2018)

DCGAN, ACGAN Private CT Data
augmentation

Sensitivity(%):
78.6

85.7 Synthesis of high quality focal liver lesions
from CT for lesion CLF.

Zhao et al. (2020a) Tripartite GAN Private MRI Data
augmentation

Accuracy(%):
79.2

89.4 Synthetic contrast-enhanced MRI → tumour
detection without contrast agents.

(continued on next page)
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Table 5 (continued).
Publication Method Dataset Modality Task Metric w/o GAN

(Baseline)
Metric with
GAN
(Baseline+𝛥)

Highlights

Doman et al.
(2020)

DCGAN JAMIT (JAMIT
Japanese Society
of Medical
Imaging
Technology),
3Dircadb (Soler
et al., 2010)

CT Data
augmentation

Detection
rate(%): 65

95 Generate metastatic liver lesions in abdominal
CT for improved cancer detection.

Stomach/Colon/Prostate

Kanayama et al.
(2019)

DCGAN Private Endoscopy Data
augmentation

AP(%): 59.6 63.2 Synthesise lesion images for gastric cancer
detection.

Shin et al. (2018b) cGAN CVC-CLINIC
(Bernal et al.,
2015), CVC-
ClinicVideoDB
(Angermann
et al., 2017)

Colonoscopy Data
augmentation

Precision(%):
81.9

85.3 Synthesise polyp images from normal
colonoscopy images for polyp detection.

Rau et al. (2019)
ColonoscopyDepth

pix2pix-based Private Colonoscopy Data
augmentation

Mean L1(%):
33.9

24.7 Transform monocular endoscopic images from
two domains to depth maps.

Yu and Zhang
(2020)

CapGAN BrainWeb
phantom
(Cocosco et al.,
1997), Prostate
MRI (Choyke
et al., 2016)

MRI Data
augmentation

ROC AUC(%):
85.1

88.5 Synthesise prostate MRI using Capsule
Network-Based DCGAN instead of CNN.

Krause et al. (2021) CGAN TCGA, NLCS
(van den Brandt
et al., 1990)

Histopathol-
ogy

Data
augmentation

ROC AUC(%):
75.7

77.7 GANs to enhance genetic alteration detection in
colorectal cancer histology.

Skin

Bissoto et al.
(2018)
gan-skin-lesion

PGAN, DCGAN,
pix2pix

Dermofit
(Ballerini et al.,
2013), ISIC 2017
(Codella et al.,
2018), IAD
(Argenziano
et al., 2002)

Dermoscopy Data
augmentation

ROC AUC(%):
83.4

84.7 Comparative study of GANs for skin lesions
generation

Creswell et al.
(2018)

ssDAAE ISIC 2017
(Codella et al.,
2018)

Dermoscopy Representation
learning,
classification

ROC AUC(%):
89.0

89.0 Adversarial autoencoder fine-tuned on few
labelled lesion classification samples.

Baur et al. (2018) DCGAN, LAPGAN ISIC 2017
(Codella et al.,
2018)

Dermoscopy Data
augmentation

Accuracy(%) :
71.6

74.0 Comparative study, 256 × 256 px skin lesions
synthesis. LAPGAN acc = 74.0%

Rashid et al. (2019) GAN ISIC 2017
(Codella et al.,
2018)

Dermoscopy Data
augmentation

Accuracy(%):
81.5

86.1 Boost CLF performance with GAN-based skin
lesions augmentation.

Fossen-Romsaas
et al. (2020)

AC-GAN,
CycleGAN

HAM10000 &
BCN20000
(Tschandl et al.,
2018; Combalia
et al., 2019),
ISIC 2017
(Codella et al.,
2018)

Dermoscopy Data
augmentation

Recall(%): 72.1 76.3 Realistic-looking, class-specific synthetic skin
lesions.

Qin et al. (2020) Style-based GAN ISIC 2017
(Codella et al.,
2018)

Dermoscopy Data
augmentation

Precision(%):
71.8

76.9 Style control & noise input tuning in G to
synthesise high quality lesions for CLF.

Lung

Bi et al. (2017) M-GAN Private PET Data
augmentation

F1-Score(%):
66.38

63.84 Synthesise PET data via multi-channel GAN for
tumour detection.

Salehinejad et al.
(2018)

DCGAN Private Chest X-rays Data
augmentation

Accuracy(%):
70.87

92.10 Chest pathology CLF using synthetic data.

Zhao et al. (2018) F(&)BGAN LIDC-IDRI
(Armato III
et al., 2011)

CT Data
augmentation

Accuracy(%):
92.86

95.24 Forward GAN generates diverse images,
Backward GAN improves their quality.

Onishi et al. (2019) WGAN Private CT Data
augmentation

Accuracy(%): 63
(Benign), 82
(Malign)

67, 94 Synthesise pulmonary nodules on CT images
for nodule CLF.

(continued on next page)
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Table 5 (continued).
Publication Method Dataset Modality Task Metric w/o GAN

(Baseline)
Metric with
GAN
(Baseline+𝛥)

Highlights

Gao et al. (2019)
3DGANLungNodules

WGAN-GP LIDC-IDRI
(Armato III
et al., 2011)

CT Data
augmentation

Sensitivity(%):
84.8

95.0 Synthesise lung nodule 3D data for nodule
detection.

Han et al. (2019a) 3DMCGAN LIDC-IDRI
(Armato III
et al., 2011)

CT Data
augmentation

CPM(%): 51.8 55.0 3D multi-conditional GAN (2 Ds) for
misdiagnosis prevention in nodule detection.

Yang et al. (2019) GAN LIDC-IDRI
(Armato III
et al., 2011)

CT Data
augmentation

ROC AUC(%):
87.56

88.12 Class-aware 3D lung nodule synthesis for
nodule CLF.

Wang et al.
(2020b)
CA-MW-AS

CGAN LIDC-IDRI
(Armato III
et al., 2011)

CT Data
augmentation

F1-Score(%):
85.88

89.03 Nodule synthesis conditioned on semantic
features.

Kuang et al. (2020) Multi-D GAN LIDC-IDRI
(Armato III
et al., 2011)

CT Anomaly
detection

Accuracy(%):
91.6

95.32 High anomaly scores on malignant images, low
scores on benign.

Ghosal et al. (2020) WGAN-GP LIDC-IDRI
(Armato III
et al., 2011)

CT Data
augmentation

ROC AUC(%):
95.0

97.0 Unsupervised AE & clustering augmented
learning method for nodule CLF.

Sun et al. (2020a) DCGAN LIDC-IDRI
(Armato III
et al., 2011)

CT Data
augmentation

Accuracy(%):
93.8

94.5 Nodule CLF: Pre-training AlexNet (Krizhevsky
et al., 2012) on synthetic, fine-tuning on real.

Wang et al. (2020c) pix2pix,
PGWGAN,
WGAN-GP

Private CT Data
augmentation

Accuracy(%):
53.2

60.5 Augmented CNN for subcentimeter pulmonary
adenocarcinoma CLF.

Bu et al. (2020) 3D CGAN LUNA16 (Setio
et al., 2017)

CT Data
augmentation

Sensitivity(%):
97.81

98.57 Squeeze-and-excitation mechanism and residual
learning for nodule detection.

Nishio et al. (2020) 3D pix2pix LUNA16 (Setio
et al., 2017)

CT Data
augmentation

Accuracy(%): 85 85 Nodule size CLF. Masked image + mask +
nodule size conditioned paired translation.

Onishi et al. (2020) WGAN Private CT Data
augmentation

Specificity(%):
66.7

77.8 AlexNet pretrained on synthetic, fine-tuned on
real nodules for malign/benign CLF.

Teramoto et al.
(2020)

PGGAN Private Cytopathol-
ogy

Data
augmentation

Accuracy(%):
81.0

85.3 Malignancy CLF: CNN pretrained on synthetic
lung cytology images, fine-tuned on real.

Others

Schlegl et al.
(2017)

AnoGAN Private OCT Anomaly
detection

ROC AUC(%): 73 89 D representations trained on healthy retinal
image patches to score abnormal patches.

Zhang et al.
(2018b)

DCGANs, WGAN,
BEGANs

Private OCT Data
augmentation

Accuracy(%):
95.67

98.83 CLF of thyroid/non-thyroid tissue. Comparative
study for GAN data augmentation.

Chaudhari et al.
(2019)

MG-GAN NCBI (Edgar
et al., 2002)

Expression
microarray
data

Data
augmentation

Accuracy(%)
P:71.43 L:68.21
B:69.8 C:67.59

93.6, 88.1,
90.3, 91.7

Prostate, Lung, Breast, Colon. Interesting for
fusion with imaging data.

Liu et al. (2019b) WGAN-based Private Serum
sample
staging data

Data
augmentation

Accuracy(%):
64.52

70.97 Synthetic training data for CLF of stages of
Hepatocellular carcinoma.

Rubin et al. (2019) TOP-GAN Private Holographic
microscopy

Data
augmentation

AUC(%): 89.2 94.7 Pretrained D adapted to CLF of optical path
delay maps of cancer cells (colon, skin).
Fig. 11. Scatter plot displaying year of publication and Dice Score improvement (in %). Each marker represents a publication and its colour and shape encoding represents its
corresponding anatomical category. Only the publications are included that report Dice Score alongside a baseline comparison. For publications reporting multiple Dice Scores,
their mean was computed and included herein. Author names have been manually selected at random for highlighting.
Hamarneh, 2019; Oliveira, 2020b). Similarly, the conditional GAN
methods have also been used for controllable data augmentation for
improving lesion segmentation (Oliveira, 2020a). Providing a condition
24
as an input to generate a mask is particularly useful to specify the
location, size, shape, and heterogeneity of the synthetic lesions. One
of the recent examples, proposed by Kim et al. (2020), demonstrates

https://github.com/andy1445/3D_GAN_Lung_Nodules
https://github.com/qiuliwang/CA-MW-Adversarial-Synthesis
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this in brain MRI tumour synthesis by conditioning an input with
simplified controllable concentric circles to specify lesion location and
characteristics. A further method for data augmentation is the in-
painting of generated lesions into healthy real images or into other
synthetic images, as depicted by Fig. 9(f). Overall, the described data
augmentation techniques have shown to improve generalisability and
performance of segmentation models by increasing both the number
and the variability of training samples (Qasim et al., 2020; Foroozandeh
and Eklund, 2020; Lee et al., 2020).

Segmentation models with integrated adversarial loss. As stated in
Fig. 1(i), GANs can also be used as the algorithm that generates
robust segmentation masks, where the generator is used as a segmenter
and the discriminator scrutinises the segmentation masks given an
input image. One intuition behind this approach is the detection
and correction of higher-order inconsistencies between the ground
truth segmentation maps and the ones created by the segmenter via
adversarial learning (Luc et al., 2016; Hu et al., 2020; Cirillo et al.,
2020). This approach is demonstrated in Fig. 9(b). With the additional
adversarial loss when training a segmentation model, this approach has
been shown to improve semantic segmentation accuracy (Hung et al.,
2019; Sarker et al., 2019; Shi et al., 2020). Using adversarial training,
similarity of a generated mask to manual segmentation given an input
image is taken under consideration by the discriminator allowing a
global assessment of the segmentation quality. This approach further
offers a practical solution towards handling intra- and inter-observer
annotation variability, as the mask discriminator learns an average over
observers, which is backpropagated to the segmenter via adversarial
loss.

A unique way of incorporating the adversarial loss from the dis-
criminator has been recently proposed in Nie and Shen (2020). In their
work, the authors utilise a fully-convolutional network as a discrim-
inator, unlike its counterparts that use binary, single neuron output
networks. In doing so, a dense confidence map is produced by the
discriminator, which is further used to train the segmenter with an
attention mechanism.

Overall, using an adversarial loss as an additional global segmenta-
tion assessment is likely to be a helpful further signal for segmentation
models, in particular, for heterogeneously structured datasets of limited
size (Kohl et al., 2017), as is common for cancer imaging datasets. We
highlight potential further research in GAN-based segmentation models
to learn to segment increasingly fine radiologic distinctions. These
models can help to solve further cancer imaging challenges, for exam-
ple, accurate differentiation between neoplasms and tissue response to
injury in the regions surrounding a tumour after treatment (Bi et al.,
2019).

Segmentation models with integrated adversarial domain discrimination.
Moreover, a similar adversarial loss can also be performed internally
on the segmentation model features as illustrated in Fig. 9(c). Such
an approach can benefit unsupervised domain adaptation and domain
generalisation by enforcing the segmentation model to learn to base
its prediction on domain-invariant feature representations (Kamnitsas
et al., 2017).

4.3.3. Limitations and future prospects for cancer imaging segmentation
As shown in Table 4, the applications of GANs in cancer image

segmentation cover a variety of clinical requirements. Remarkable steps
have been taken to advance this field of research over the past few
years. However, the following limitations and future prospects can be
considered for further investigation:

• Although the data augmentation using GANs could increase the
number of training samples for segmentation, the variability of
the synthetic data is limited to the training data. Hence, it may
limit the potential of improving the performance in terms of
25

segmentation accuracy. Moreover, training a GAN that produce
high sample variability requires a large dataset also with a high
variability, and, in most of the cases, with corresponding an-
notations. Considering the data scarcity challenge in the cancer
imaging domain, this can be difficult to achieve.

• In some cases, using GANs could be excessive, considering the
difficulties related to convergence of competing generator and
discriminator parts of the GAN architectures. For example, the
recently proposed SynthSeg model (Billot et al., 2020) is based
on Gaussian Mixture Models to generate images and train a
contrast agnostic segmentation model. Such approaches can be
considered as an alternative to avoid common pitfalls of the GAN
training process (e.g., mode collapse). However, this approach
needs to be further investigated for cancer imaging tasks where
the heterogeneity of tumours is challenging.

• A great potential for using synthetic cancer images is to generate
common shareable datasets as benchmarks for automated seg-
mentation methods (Bi et al., 2019). Although this benchmark
dataset needs its own validation, it can be beneficial in testing
the limits of automated methods with systematically controlled
test cases. Such benchmark datasets can be generated by con-
trolling the shape, location, size, intensities of tumours, and can
simulating diverse images of different domains that reflect the
distributions from real institutions. To avoid learning patterns
that are only available in synthetic datasets (e.g., checkerboard
artifacts), it is a prospect to investigate further metrics that mea-
sure the distance of such synthetic datasets to real-world datasets
and the generalisation and extrapolation capabilities of models
trained on synthetic benchmarks to real-world data.

4.4. Detection and diagnosis challenges

4.4.1. Common issues in diagnosing malignancies
Clinicians’ high diagnostic error rates. Studies of radiological error report
high ranges of diagnostic error rates (e.g., discordant interpretations in
31%–37% in Oncologic CT, 13% major discrepancies in Neuro CT and
MRI) (Brady, 2017). After (McCreadie and Oliver, 2009) critically re-
viewed the radiology cases of the last 30 months in their clinical centre,
they found that from 256 detected errors (62% CT, 12% Ultrasound,
11% MRI, 9% Radiography, 5% Fluoroscopy) in 222 patients, 225
errors (88%) were attributable to poor image interpretation (14 false
positive, 155 false negative, 56 misclassifications). A recent literature
review on diagnostic errors by Newman-Toker et al. (2021) estimated a
false negative rate,20 of 22.5% for lung cancer, 8.9% for breast cancer,
9.6% for colorectal cancer, 2.4% for prostate and 13.6% for melanoma.
These findings exemplify the uncomfortably high diagnostic and image
interpretation error rates that persist in the field of radiology despite
decades of interventions and research (Itri et al., 2018).

The challenge of reducing clinicians’ high workload. In some settings,
radiologists must interpret one CT or MRI image every 3–4 s in an
average 8-h workday (McDonald et al., 2015). Automated CADe and
CADx systems can provide a more balanced quality-focused workload
for radiologists, where radiologists focus on scrutinising the auto-
mated detected lesions (false positive reduction) and areas/patches
with high predictive uncertainty (false negative reduction). A benefit
of CADe/CADx deep learning models are their real-time inference and
strong pattern recognition capabilities that are not readily susceptible
to cognitive bias (discussed in 4.3.1), environmental factors (Itri et al.,
2018), or inter-observer variability (discussed in 4.3.1).

20 In Newman-Toker et al. (2021) the false negative rates includes both
missed (patient encounters at which the diagnosis might have been made but
was not) and delayed diagnosis (diagnostic delay relative to urgency of illness
detection).
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Fig. 12. Scatter plot illustrating the performance improvement attributable to adversarial networks for the surveyed disease diagnosis and detection publications. The shown
performance is based on the respective publication’s metric reported in Table 5 and include f1-score (F1), sensitivity (SEN), accuracy (ACC), area under the receiver operating
characteristic curve (AUC), and detection rate (DR). Each publication is represented by a marker with a colour and shape encoding depicting the publication’s anatomical category.
The black identity line indicates no change between baseline and adversarial network intervention, while dots below this line represent an improvement. The red regression line
depicts the trend of improvement across publications. The author names of a few publications have been manually selected for highlighting based on the distance to the trend
line.
Detection model performance on critical edge cases. Challenging cancer
imaging problems are the high intra- and inter-tumour heterogene-
ity (Bi et al., 2019), the detection of small lesions and metastasis across
the body (e.g., lymph node involvement and distant metastasis Hosny
et al., 2018) and the accurate distinction between malignant and benign
tumours (e.g., for detected lung nodules that seem similar on CT
scans Hosny et al., 2018). Methods are needed to extend on and further
increase the current performance of deep learning detection models (Bi
et al., 2019).

4.4.2. GAN applications for cancer detection and diagnosis
As we detail in the following, the capability of adversarial learning

to improve malignancy detection has been demonstrated for multiple
tumour types and imaging modalities. To this end, Table 5 summarises
the collection of recent publications that utilise GANs and adversarial
training for cancer detection, classification, and diagnosis.

Figs. 12 and 13 visualise the publications’ performance metric val-
ues reported in Table 5. Fig. 12 provides visual estimate of the effective-
ness of GANs and adversarial training in increasing downstream task
performance. A performance increase of approximately 5 percentage
points can be observed by comparing the figure’s black identity line
with the red trend line over publications. We note that no visual
pattern seems to be observable that indicates a difference in perfor-
mance gain between anatomical categories. Across all publications, the
performance gains seem not to be a function of the strength of the
baseline, as they remain approximately constant with increasing base-
line performance. This is indicated by the minimal change of distance
between the black identity line and the red trend line throughout the
graph. Fig. 13 shows the GAN-induced variation in performance for
the years 2017 to 2021 with multiple adversarial models achieving a
performance increase of over 10% and most models over 3% on their
respective diagnostic downstream task. As emphasised in Section 4.3.2,
conclusion drawn from Figs. 12 and 13 have to take publication bias
into account. Further, benchmarking and comparison of individual
publications based on the presented data in these figures is not part
of their intended use due to the differences in baselines, modalities,
organs, train and test datasets, and publication objectives.

Adversarial anomaly and outlier detection examples. Schlegl et al. (2017)
captured imaging markers relevant for disease prediction using a deep
convolutional GAN named AnoGAN. AnoGAN learnt a manifold of
normal anatomical variability, accompanying a novel anomaly scoring
scheme based on the mapping from image space to a latent space.
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While Schlegl et al. validated their model on retina optical coherence
tomography images, their unsupervised anomaly detection approach is
applicable to other domains including cancer detection, as indicated
in Fig. 1(l). Chen et al. (2018b) used a Variational Autoencoder GAN
for unsupervised outlier detection using T1 and T2 weighted brain
MRI images. The scans from healthy subjects were used to train the
auto-encoder model to learn the distribution of healthy images and
detect pathological images as outliers. Creswell et al. (2018) pro-
posed a semi-supervised Denoising Adversarial Autoencoder (ssDAAE)
to learn a representation based on unlabelled skin lesion images. The
semi-supervised part of their CNN-based architecture corresponds to
malignancy classification of labelled skin lesions based on the encoded
representations of the pretrained DAAE. As the amount of labelled
data is smaller than the unlabelled data, the labelled data is used to
fine-tune classifier and encoder. In ssDAAE, not only the adversarial
autoencoder’s chosen prior distribution (Makhzani et al., 2015), but
also the class label distribution is discriminated by a discriminator,
the latter distinguishing between predicted continuous labels and real
binary (malignant/benign) labels. Kuang et al. (2020) applied unsu-
pervised learning to distinguish between benign and malignant lung
nodules. In their multi-discriminator GAN (MDGAN) various discrimi-
nators scrutinise the realness of generated lung nodule images. After
GAN pretraining, an encoder is added in front of the generator to
the end-to-end architecture to learn the feature distribution of benign
pulmonary nodule images and to map these features into latent space.
The benign and malignant lung nodules were scored similarly as in the
f-AnoGAN framework (Schlegl et al., 2019), computing and combining
an image reconstruction loss and a feature matching loss, the latter
comparing the discriminators’ feature representations between real and
encoded-generated images from intermediate discriminator layers. As
exemplified in Fig. 9(g), the model yielded high anomaly scores on
malignant images and low anomaly scores on benign images despite
limited dataset size. Benson and Beets-Tan (2020) used GANs trained
from multi-modal MRI images as a 3-channel input (T1-T2 weighted,
FLAIR, ADC MRI) in brain anomaly detection. The training of the
generative network was performed using only healthy images together
with pseudo-random irregular masks. Despite the training dataset con-
sisting of only 20 subjects, the resulting model increased the anomaly
detection rate.

Synthetic detection model training data. Among the GAN publications
trying to improve classification and detection performance, data aug-
mentation is the most recurrent approach to balance, vary, and increase

the detection model’s training set size, as suggested in Fig. 1(k).
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Fig. 13. Scatter plot displaying year of publication and change in performance between baseline and adversarial network method (in %). As in Table 5, the underlying performance
etrics include f1-score (F1), sensitivity (SEN), accuracy (ACC), area under the receiver operating characteristic curve (AUC), and detection rate (DR). Each publication is represented

y a marker with a colour and shape encoding depicting the publication’s anatomical category. Author names have been manually selected at random for highlighting.
or instance in breast imaging, Wu et al. (2018a) trained a class-
onditional GAN to perform contextual in-filling to synthesise lesions
n healthy scanned mammograms. Guan and Loew (2019) trained

GAN on the same dataset (Heath et al., 2001) to generate syn-
hetic patches with benign and malignant tumours. The synthetic
enerated patches had clear artifacts and did not match the original
ataset distribution. Jendele et al. (2019) used a CycleGAN (Zhu
t al., 2017) and both film scanned and digital mammograms to
mprove binary (malignant/benign) lesion detection using data aug-
entation. Detecting mammographically-occult breast cancers is an-

ther challenging topic addressed by GANs. For instance, Lee and
ishikawa (2020) exploit asymmetries between mammograms of the

eft and right breasts as signals for finding mammography-occult can-
er. They trained a image-conditioned GAN (pix2pix) to generate

healthy synthetic mammogram image of the contralateral breast
e.g., left breast) given the corresponding single-sided mammogram
e.g., right breast) as input. The authors showed that there is a higher
imilarity (MSE, 2D-correlation) between simulated–real (SR) mam-
ogram pairs than real–real (RR) mammogram pairs in the pres-

nce of mammography-occult cancer. Consequently, distinguishing be-
ween healthy and mammography-occult mammograms, their classifier
ielded a higher performance when trained with both RR and SR
imilarity as input (AUC = 0.67) than when trained only with RR
air similarity as input (AUC = 0.57). 3-dimensional conditional image

synthesis with GANs has been shown, for instance, by Han et al.
(2019a), who proposed a 3D Multi-Conditional GAN (3DMCGAN) to
generate realistic and diverse nodules placed naturally on lung CT
images to boost sensitivity in 3D object detection. Bu et al. (2020) built
a 3D image-conditioned GAN based on pix2pix, where the input is a 3D
volume of interest (VOI) that is cropped from a lung CT scan and con-
tains a missing region in its centre. Both generator and discriminator
contain squeeze-and-excitation (Hu et al., 2018a) residual (He et al.,
2016) neural network (SE-ResNet) modules to improve the quality
of the synthesised lung nodules. Another example based on lung CT
images is the method by Nishio et al. (2020), where the proposed
GAN model used masked 3D CT images and nodule size information
to generate images.

As to multi-modal training data synthesis, Van Tulder and de Brui-
jne (2015) replaced missing sequences of a multi-sequence MRI with
synthetic data. The authors illustrated that if the synthetic data gen-
eration model is more flexible than the classification model, the syn-
thetic data can provide features that the classifier has not extracted
from the original data, which can improve the performance. During
colonoscopy, depth maps can enable navigation alongside aiding detec-
tion and size measurements of polyps. For this reason, Rau et al. (2019)
demonstrated the synthesis of depth maps using a image-conditioned
GAN (pix2pix) with monocular endoscopic images as input, reporting
promising results on synthetic, phantom and real datasets. In breast
27

cancer detection, Muramatsu et al. (2020) translated lesions from lung
CT to breast MMG using cycleGAN yielding a performance improve-
ment in breast mass classification when training a classifier with the
domain-translated generated samples.

4.4.3. Future prospects for cancer detection and diagnosis
Granular class distinctions for synthetic tumour images. Further research
opportunity exists in exploring a more fine-grained classification of
tumours that characterises different subtypes and disease grades in-
stead of binary malignant–benign classification. Being able to robustly
distinguish between different disease subtypes with similar imaging
phenotypes (e.g., glioblastoma versus primary central nervous system
lymphoma Kang et al., 2018) addresses the challenge of reducing diag-
nostic ambiguity (Bi et al., 2019). GANs can be explored to augment
training data with samples of specific tumour subtypes to improve
the distinction capabilities of disease detection models. This can be
achieved by training a detection model on training data generated
by various GANs, where each GAN is trained on a different tumour
subtype distribution. Another option we estimate worth exploring is to
use the tumour subtype or the disease grade (e.g., the Gleason Score for
prostate cancer Hu et al., 2018b) as a conditional input into the GAN
to generate additional labelled synthetic training data.

Cancer image interpretation and risk estimation. Besides the detection
of prospectively cancerous characteristics in medical scans, ensuring
a high accuracy in the subsequent interpretation of these findings are
a further challenge in cancer imaging. Improving the interpretation
accuracy can reduce the number of unnecessary biopsies and harmful
treatments (e.g., mastectomy, radiation therapy, chemotherapy) of in-
dolent tumours (Bi et al., 2019). For instance, the rate of overdiagnosis
of non-clinically significant prostate cancer ranges widely between
1.7% up to a noteworthy 67% (Loeb et al., 2014). To address this,
detection models can be extended to provide risk and clinical signif-
icance estimations. For example, given both an input image, and an
array of risk factors (e.g., BRCA1/BRCA2 status for breast cancer Li
et al., 2017, comorbidity risks), a deep learning model can weight and
evaluate a patient’s risk based on learned associations between risk
factors and input image features. The GAN framework is an example
of this, where clinical, non-clinical and imaging data can be combined,
either as conditional input for image generation or as prediction targets.
For instance, given an input image, an AC-GAN (Odena et al., 2017;
Kapil et al., 2018) can classify the risk as continuous label (see Fig. 9(e))
or, alternatively, a discriminator can be used to assess whether a risk
estimate provided by a generator is realistic. Also, a generator can learn
a function for transforming and normalising an input image given one
or several conditional input target risk factors or tumour characteristics
(e.g., a specific mutation status, a present comorbidity, etc.) to generate

labelled synthetic training data.
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4.5. Treatment and monitoring challenges

After a tumour is detected and properly described, new challenges
arise related to planning and execution of medical intervention. In this
section we examine these challenges, in particular: tumour profiling
and prognosis; challenges related to choice, response and discovery of
treatments; as well as further disease monitoring. Table 6 provides an
overview of the cancer imaging GANs that are applied to treatment and
monitoring challenges, which are discussed in the following.

4.5.1. Disease prognosis and tumour profiling
Challenges for disease prognosis. An accurate prognosis is crucial to
plan suitable treatments for cancer patients. However, in specific
cases, it could be more beneficial to actively monitor the tumours
instead of treating them Bi et al. (2019). Challenges in cancer prog-
nosis include the differentiation between long-term and short term
survivors (Bi et al., 2019), patient risk estimation considering the
complex intra-tumour heterogeneity of the tumour microenvironment
(TME) (Nearchou et al., 2021), or the estimation of the probability of
disease stages and tumour growth patterns, which can strongly affect
outcome probabilities (Bi et al., 2019). In this sense, GANs (Li et al.,
2021b; Kim et al., 2018b) and AI models in general (Cuocolo et al.,
2020; Dimitriou et al., 2018) have shown potential in prognosis and
survival prediction for oncology patients.

GAN disease prognosis examples. Li et al. (2021b) (in Table 2) show
that their GAN-based CT normalisation framework for overcoming
the domain shift between images from different centres significantly
improves accuracy of classification between short-term and long-term
survivors. Ahmed et al. (2021) trained omicsGAN to translate between
microRNA and mRNA expression data pairs, but could be readily
enhanced to also translate between cancer imaging features and genetic
information. The authors evaluate omicsGAN on breast and ovarian
cancer datasets and report improved prediction signals fo synthetic
data tested via cancer outcome classification. Another non-imaging
approach is provided by Kim et al. (2018b), who apply a GAN for pa-
tient cancer prognosis prediction based on identification of prognostic
biomarker genes. They train their GAN on reconstructed human biology
pathways data, which allows for highlighting genes relevant to cancer
development, resulting in improvement of the prognosis prediction
accuracy. In regard to these works on non-imaging approaches, we
promote future extensions combining prognostic biomarker genes and
-omics data with the phenotypic information present in cancer images
into multi-modal prognosis models.

GAN tumour profiling examples. Related to Fig. 1(l), Vu et al. (2020a)
propose that image-conditioned GANs (pix2pix) can learn latent charac-
teristics of tissues of tumours that correlate with specific tumour grade.
The authors show that when inferring their proposed BenignGAN on
malignant tumour tissue images after training it exclusively on benign
ones, it generates less realistic results. This allows for quantitative
measurement of the differences between the original and the generated
image, whereby these differences can be interpreted as tumour grade.

Kapil et al. (2018) explore AC-GAN (Odena et al., 2017) on digital
pathology imagery for semi-supervised quantification of the Non-Small-
Cell-Lung-Cancer biomarker programmed death ligand 1 (PD-L1). Their
class-conditional generator receives a one-hot encoded PD-L1 label as
input to generate a respective biopsy tissue image, while their discrim-
inator receives the image and predicts both PD-L1 label and whether
the image is fake or real. The AC-GAN method compares favourably
to other supervised and non-generative semi-supervised approaches,
and also systematically yields high agreement with visual21 tumour
proportional scoring (TPS).

21 A visual estimation of pathologists of the tumour cell percentage showing
D-L1 staining.
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As for the analysis of the TME, Quiros et al. (2019) propose Pathol-
ogyGAN, which they train on breast and colorectal cancer tissue im-
agery. This allows for learning the most important tissue phenotype
descriptions, and provides a continuous latent representation space,
enabling quantification and profiling of differences and similarities
between different tumours’ tissues. Quiros et al. (2019) show that
lesions encoded in an GAN’s latent space enable using vector distance
measures to find similar lesions that are close in the latent space within
large patient cohorts. We highlight the research potential in lesion
latent space representations to assess inter-tumour heterogeneity. Also,
the treatment strategies and successes of patients with a similar lesion
can inform the decision-making process of selecting treatments for a
lesion at hand, as denoted by Fig. 1(m).

Outlook on genotypic tumour profiling with phenotypic data. A further
challenge is that targeted oncological therapies require genomic and
immunological tumour profiling (Cuocolo et al., 2020) and effective
linking of tumour genotype and phenotype. Biopsies only allow to
analyse the biopsied portion of the tumour’s genotype, while also
increasing patient risk due to the possibility of dislodging and seed-
ing of neoplastic altered cells (Shyamala et al., 2014; Parmar et al.,
2015). Therefore, a trade-off22 exists between minimising the number of
biopsies and maximising the biopsy-based information about a tumour’s
genotype. These reasons and the fact that current methods are invasive,
expensive, and time-consuming (Cuocolo et al., 2020) make genotypic
tumour profiling an important issue to be addressed by AI cancer
imaging methods. In particular adversarial deep learning models are
promising to generate the non-biopsied portion of a tumour’s genotype
after being trained on paired genotype and radiology imaging data.23

We recommend future studies to explore this line of research, which is
regarded as a key challenge for AI in cancer imaging (Bi et al., 2019;
Parmar et al., 2015).

4.5.2. Treatment planning and response prediction
Challenges for cancer treatment predictions. A considerable number of
malignancies and tumour stages have various possible treatment op-
tions and almost no head-to-head evidence to compare them to. Due to
that, oncologists need to subjectively select an approved therapy based
on their individual experience and exposure (Troyanskaya et al., 2020).

Furthermore, despite existing treatment response assessment frame-
works in oncology, inter- and intra-observer variability regarding
choice and measurement of target lesions exists among oncologists and
radiologists (Levy and Rubin, 2008). To achieve consistency and accu-
racy in standardised treatment response reporting frameworks (Levy
and Rubin, 2008), AI and GAN methods can identify quantitative
biomarkers24 from medical images in a reproducible manner useful for
risk and treatment response predicts (Hosny et al., 2018).

Apart from the treatment response assessment, treatment response
prediction is also challenging, particularly for cancer treatments such
as immunotherapy (Bi et al., 2019). In cancer immunogenomics, for
instance, unsolved challenges comprise the integration of multi-modal
data (e.g., radiomic and genomic biomarkers Bi et al., 2019), immuno-
genicity prediction for neoantigens, and the longitudinal non-invasive
monitoring of the therapy response (Troyanskaya et al., 2020). In
regard to the sustainability of a therapy, the inter- and intra-tumour
heterogeneity (e.g., in size, shape, morphology, kinetics, texture, etiol-
ogy) and potential sub-clone treatment survival complicates individual
treatment prediction, selection, and response interpretation (Bi et al.,
2019).

22 Due to this and due to the high intra-tumour heterogeneity, available
biopsy data likely only describes a subset of tumour’s clonal cell population.

23 Imaging data on which the entire lesion is visible to allow learn-
ing correlations between phenotypic tumour manifestations and genotype
signatures.

24 For example, characteristics and density variations of the parenchyma

patterns on breast images (Bi et al., 2019).
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Table 6
Overview of adversarially-trained models applied to treatment and monitoring challenges. Publications are clustered by section and ordered by year in ascending order.

Publication Method Dataset Modality Task Highlights

Disease prognosis

Kim et al.
(2018b)

GAN-based TCGA (Tomczak
et al., 2015),
Reactome (Croft
et al., 2014;
Fabregat et al.,
2017)

[non-imaging]
multi-omics cancer data

Data synthesis Biomarker gene identification for pancreas, breast, kidney, brain,
and stomach cancer with GANs and PageRank.

Ahmed et al.
(2021)

omicsGAN TCGA (Network
et al., 2011; Ciriello
et al., 2015)

[non-imaging] ovarian/
breast gene expression

Paired
translation

microRNA to mRNA translation and vice versa. Synthetic data
improves cancer outcome classification.

Tumour profiling

Kapil et al.
(2018)

AC-GAN Private Lung histopathology Classification AC-GAN CLF of PD-L1 levels for lung tumour tissue images
obtained via needle biopsies.

Quiros et al.
(2019)
PathologyGAN

PathologyGAN VGH/NKI (Beck
et al., 2011), NCT
(Kather et al., 2018)

Breast/colorectal
histopathology

Representation
learning

Learning tissue phenotype descriptions & tumour representations.
Combines BigGAN (Brock et al., 2018), StyleGAN (Karras et al.,
2019) & RAD (Jolicoeur-Martineau, 2018)

Vu et al. (2020a) BenignGAN Private Colorectal
histopathology

Paired
translation

Edge map-to-image. As trained on only benign, malignant
images quantifiable via lower realism.

Treatment response prediction

Kadurin et al.
(2017a) and
Kadurin et al.
(2017b)

AAE-based
druGAN

Pubchem BioAssay
(Wang et al., 2014)

[non-imaging]
Molecular fingerprint
data

Representation
learning

AAE for anti-cancer agent drug discovery. AAE input/output:
molecular fingerprints & log concentration vectors.

Goldsborough
et al. (2017)

CytoGAN BBBC021 (Ljosa
et al., 2012b)

Cytopathology Representation
learning

Grouping cells with similar treatment response via cell image
representations. Based on DCGAN, LSGAN, WGAN.

Yoon et al.
(2018)

GANITE USA 89-91 Twins
(Almond et al.,
2004)

[non-imaging]
individualised
treatment effects

Multi-class-
conditional
synthesis

cGANs for individual treatment effect prediction, including
unseen counterfactual outcomes and confidence intervals.

Ge et al. (2020) MGANITE AML clinical trial
(Kornblau et al.,
2009)

[non-imaging]
individualised
treatment effects

Multi-class-
conditional
synthesis

GANITE extension introducing dosage quantification and
continuous and categorical treatment effect estimation.

Bica et al.
(2020)

SCIGAN CGA (Weinstein
et al., 2013), MIMIC
III (Johnson et al.,
2016)

[non-imaging]
individualised
treatment effects

Multi-class-
conditional
synthesis

GANITE extension introducing continuous interventions and
theoretical explanation for GAN counterfactuals.

Radiation dose planning

Mahmood et al.
(2018)

pix2pix-based Private Oropharyngeal CT Paired
translation

Translating CT to 3D dose distributions without requiring
hand-crafted features.

Maspero et al.
(2018)

pix2pix Private Prostate/rectal/cervical
CT/MRI

Paired
translation

MR-to-CT translation for MR-based radiation dose planning
without CT acquisition.

Murakami et al.
(2020)

pix2pix Private Prostate CT Paired
translation

CT-to-radiation dose distribution image translation without
time-consuming contour/organs at risk (OARs) data.

Peng et al.
(2020)

pix2pix,
CycleGAN

Private Nasopharyngeal
CT/MRI

Unpaired/Paired
translation

Comparison of pix2pix & CycleGAN-based generation of CT from
MR for radiation dose planning.

Kearney et al.
(2020a)

DoseGAN Private Prostate CT/PTV/OARs Paired
translation

Synthesis of volumetric dosimetry from CT+PTV+OARs even in
the presence of diverse patient anatomy.

Disease tracking & monitoring

Kim et al.
(2019b)

CycleGAN Private Liver MRI/CT/dose Unpaired
translation

Pre-treatment MR+CT+dose translation to post-treatment MRI →

predicting hepatocellular carcinoma progression.

Elazab et al.
(2020)

GP-GAN BRATS 2014 (Menze
et al., 2014)

Cranial MRI Paired
translation

3D U-Net G generating progression image from longitudinal MRI
to predict glioma growth between time-step.

Li et al. (2020a) DC-AL GAN,
DCGAN

Private Cranial MRI Noise-to-image
synthesis

CLF uses D representations to distinguish pseudo- and true
glioblastoma progression.
GAN treatment effect estimation examples. In line with Fig. 1(n), Yoon
et al. (2018) propose the conditional GAN framework ‘GANITE’, where
individual treatment effect prediction allows for accounting for unseen,
counterfactual outcomes of treatment. GANITE consists of two GANs:
first, a counterfactual GAN is trained on feature and treatment vectors
along with the factual outcome data. Then, the trained generator’s
output is used for creating a dataset, on which the other GAN, called
ITE (Individual Treatment Response) GAN, is being trained. GANITE
provides confidence intervals along with the prediction, while being
29

readily scalable for any number of treatments. However, it does not
allow for taking time, dosage or other treatment parameters into ac-
count. MGANITE, proposed by Ge et al. (2020), extends GANITE by
introducing dosage quantification, and thus enables continuous and
categorical treatment effect estimations. SCIGAN (Bica et al., 2020)
also extends upon GANITE and predicts outcomes of continuous rather
than one-time interventions and the authors further provide theoretical
justification for GANs’ success in learning counterfactual outcomes.
As to the problem of individual treatment response prediction, we
suggest that quantitative comparisons of GAN-generated expected post-
treatment images with real post-treatment images can yield interesting

insight for tumour interpretation. We encourage future work to explore

https://github.com/AdalbertoCq/Pathology-GAN
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generating such post-treatment tumour images given a treatment pa-
rameter and a pre-treatment tumour image as conditional inputs. With
varying treatment parameters as input, it is to be investigated whether
GANs can inform treatment selection by simulating various treatment
scenarios prior to treatment allocation or whether GANs can help to
understand and evaluate treatment effects by generating counterfactual
outcome images after treatment application.

Goldsborough et al. (2017) present an approach called CytoGAN,
where they synthesise fluorescence microscopy cell images using DC-
GAN, LSGAN, or WGAN. The discriminator’s latent representations
learnt during synthesis enable grouping encoded cell images together
that have similar cellular reactions to treatment by chemicals of known
classes (morphological profiling).25 Even though the authors reported
that CytoGAN obtained inferior result26 compared to classical, widely
applied methods such as CellProfiler (Singh et al., 2014), using GANs to
group tumour cells representations to inform chemical cancer treatment
allocation decisions is an interesting approach in the realm of treat-
ment selection, development (Kadurin et al., 2017a,b) and response
prediction.

GAN radiation dose planning examples. As radiation therapy planning is
labour-intensive and time-consuming, researchers have been spurred to
pursue automated planning processes (Sharpe et al., 2014). As outlined
in the following and suggested by Fig. 1(o), the challenge of automated
radiation therapy planning can be approached using GANs.

By framing radiation dose planning as an image colourisation prob-
lem, Mahmood et al. (2018) introduced an end-to-end GAN-based
solution, which predicts 3D radiation dose distributions from CT with-
out the requirement of hand-crafted features. They trained their model
on Oropharyngeal cancer data along with three traditional ML models
and a standard CNN as baselines. The authors trained a pix2pix (Isola
et al., 2017) GAN on 2D CT imagery, and then fed the generated dose
distributions to an inverse optimisation (IO) model (Babier et al., 2018),
in order to generate optimised plans. Their evaluation showed that their
GAN plans outperformed the baseline methods in all clinical metrics.

Kazemifar et al. (2020) (in Table 2) proposed a cGAN with U-Net
generator for paired MRI to CT translation. Using conventional dose
calculation algorithms, the authors compared the dose computed for
real CT and generated CT, where the latter showed high dosimetric
accuracy. The study, hence, demonstrates the feasibility of synthetic
CT for intensity-modulated proton therapy planning for brain tumour
cases, where only MRI scans are available.

Maspero et al. (2018) proposed a GAN-assisted approach to quicken
the process of MR-based radiation dose planning, by using a pix2pix
for generating synthetic CTs (sCTs) required for this task. They show
that a conditional GAN trained on prostate cancer patient data can
successfully generate sCTs of the entire pelvis.

A similar task has also been addressed by Peng et al. (2020). Their
work compares two GAN approaches: one is based on pix2pix and
the other on a CycleGAN (Zhu et al., 2017). The main difference
between these two approaches was that pix2pix was trained using
registered MR-CT pairs of images, whereas CycleGAN was trained on
unregistered pairs. Ultimately, the authors report pix2pix to achieve
results (i.e. mean absolute error) superior to CycleGAN, and highlight
difficulties in generating high-density bony tissues using CycleGAN.

The recently introduced attention-aware DoseGAN (Kearney et al.,
2020a) overcomes the challenges of volumetric dose prediction in
the presence of diverse patient anatomy. As illustrated in Fig. 14,
DoseGAN is based on a variation of the pix2pix architecture with
a 3D encoder–decoder generator (L1 loss) and a patch-based patch-
GAN discriminator (adversarial loss). The generator was trained on
concatenated CT, planning target volume (PTV) and organs at risk

25 CytoGAN uses an approach comparable to the one shown in Fig. 9(g).
26 i.e. mechanism-of-action classification accuracy.
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(OARs) data of prostate cancer patients, and the discriminator’s ob-
jective was to distinguish the real dose volumes from the generated
ones. Both qualitatively and quantitatively, DoseGAN was able to syn-
thesise more realistic volumetric doses compared to current alternative
state-of-the-art methods.

Murakami et al. (2020) published another GAN-based fully auto-
mated approach to dose distribution of Intensity-Modulated Radiation
Therapy (IMRT) for prostate cancer. The novelty of their solution is
that it does not require the tumour contour information, which is
time-consuming to create, to successfully predict the dose based on
the given CT dataset. Their approach consists of two pix2pix-based
architectures, one trained on paired CT and radiation dose distribu-
tion images, and the other trained on paired structure images and
radiation dose distribution images. From the generated radiation dose
distribution images the dosimetric parameters for the PTV and OARs
are computed. The generated dosimetric parameters differed on aver-
age only between 1%–3% with respect to the original ground truth
dosimetric parameters.

Koike et al. (2020) proposed a CycleGAN for dose estimation for
head and neck CT images with metal artifact removal in CT-to-CT
image translation as described in Table 2. Providing consistent dose
calculation against metal artifacts for head and neck IMRT, their ap-
proach achieves dose calculation performance similar to commercial
metal artifact removal methods.

4.5.3. Disease tracking and monitoring
Challenges in tracking and modelling tumour progression. Tumour pro-
gression is challenging to model (Huang et al., 2020) and commonly
requires rich, multi-modal longitudinal data sets. As cancerous cells
acquire growth advantages through genetic mutation in a process ar-
guably analogous to Darwinian evolution (Hanahan and Weinberg,
2000), it is difficult to predict which of the many sub-clones in the TME
will outgrow the other clones. A tumour lesion is, hence, constantly
evolving in phenotype and genotype (Bi et al., 2019) and might acquire
dangerous further mutations over time, anytime. The TME’s respective
impact is exemplified by the stage II colorectal cancer outcome classi-
fication performance gain in Dimitriou et al. (2018), which is likely
attributable to the high prognostic value of the TME information in
their training data.

In addition, concurrent conditions and alterations in the organ
system surrounding a tumour, but also in distant organs may not
only remain undetected, but could also influence patient health and
progression (Bi et al., 2019). GANs can generate hypothetical co-
morbidity data27 to aid awareness, testing, finding, and analysis of
complex disease and comorbidity patterns. A further difficulty for tu-
mour progression modelling is the a priori unknown effect of treatment.
Treatment effects may even remain partly unknown after treatment for
example in the case of radiation therapy28 (Verma et al., 2013) or after
surgery29 (Bi et al., 2019).

GAN tumour progression modelling examples. Relating to Fig. 1(p), GANs
can not only diversify the training data, but can also be applied
to simulate and explore disease progression scenarios (Elazab et al.,
2020). For instance, Elazab et al. (2020) propose GP-GAN, which
uses stacked 3D conditional GANs for growth prediction of glioma
based on longitudinal MR images. The generator is based on the U-Net
architecture (Ronneberger et al., 2015) and the segmented feature maps

27 For example from EHR (Hwang et al., 2017; Dashtban and Li, 2020),
imaging data, or a combination thereof.

28 Radiation therapy can result in destruction of the normal tissue (e.g., ra-
dionecrosis) surrounding the tumour. Such heterogeneous normal tissue
can become difficult to characterise and distinguish from the cancerous
tissue (Verma et al., 2013).

29 It is challenging to quantify the volume of remaining tumour residuals

after surgical removal (Bi et al., 2019).
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Fig. 14. GAN architecture of DoseGAN adapted from Kearney et al. (2020a) and based on pix2pix (Isola et al., 2017). Given concatenated CT scans, planning target volume (PTV)
and organs at risk (OARs), the generator of DoseGAN addresses the challenge of volumetric dose prediction for prostate cancer patients.
are used in the training process. Kim et al. (2019b) trained a CycleGAN
on concatenated pre-treatment MR, CT and dose images (i.e. resulting
in one 3-channel image) of patients with hepatocellular carcinoma to
generate follow-up enhanced MR images. This enables tumour image
progression prediction after radiation treatment, whereby CycleGAN
outperformed a vanilla GAN baseline.

The deep convolutional (DC) (Radford et al., 2015) - AlexNet
(AL) (Krizhevsky et al., 2012) GAN (DC-AL GAN) proposed by Li
et al. (2020a) is trained on longitudinal diffusion tensor imaging (DTI)
data of pseudoprogression (PsP) and true tumour progression (TTP)
in glioblastoma multiforme (GBM) patients. Both of these progression
types can occur after standard treatment30 and they are often difficult to
differentiate due to similarities in shape and intensity. In DC-AL GAN,
representations are extracted from various layers of its AlexNet discrim-
inator that is trained on discriminating between real and generated DTI
images. These representations are then used to train a support vector
machine (SVM) classifier to distinguish between PsP and TTP samples
achieving promising performance.

We recommend further studies to extend on these first adversar-
ial learning disease progression modelling approaches. One potential
research direction are GANs that simulate environment and tumour
dependent progression patterns based on conditional input data such
as the tumour’s gene expression data (Xu et al., 2020) or the pro-
gressed time between original image and generated progression image
(e.g., time passed between image acquisitions or since treatment expo-
sure). To this end, unexpected changes of a tumour may be uncovered
between time points or deviations from a tumour’s biopsy proven
genotypic growth expectations.31

5. Meta-analysis: Towards a framework for the assessment of
trustworthiness and validation

5.1. Trustworthiness of medical image synthesis studies

Section 4 presented an extensive analysis of the challenges, ex-
isting publications, and state-of-the-art data synthesis and adversarial

30 Pseudoprogression occurs in 20%–30% of GBM patients (Li et al., 2020a).
31 For example, by comparing the original patient image after progression

with the GAN-generated predicted image (or its latent representation) after
progression for time spans of interest.
31
network methods in cancer imaging. While the methodologies, exper-
iments, and results of these studies were elaborated, their validity
and trustworthiness was not specifically addressed. The validity and
trustworthiness varies between studies and depends on the breadth
and depth of the methodological evaluation and the analysis of po-
tential limitations. In the absence of a rigorous evaluation indicating
otherwise, the methodology and experimental results of a study cannot
be readily assumed to be transferable across domains, settings, tasks,
datasets and modalities. Hence, while a study reports promising results
for a particular task and seemingly solves the task’s underlying (cancer
imaging) challenge, modest changes in the dataset, evaluation method
or evaluation metrics can lead to different results and conclusions.
This points to the need of a principled assessment of trustworthiness
and validity of studies in the cancer and medical imaging domains, in
particular, the ones contributing and evaluating synthetic data and data
generation methodology.

Some frameworks have proposed guidelines and best practices for
the development of trustworthy artificial intelligence solutions in med-
ical imaging (Lekadir et al., 2021; Hasani et al., 2022). However, to
the best of our knowledge, no framework has been proposed for trust-
worthiness assessment of studies focused on medical image synthesis
solutions. Building upon the FUTURE-AI consensus guidelines (Lekadir
et al., 2021) and the lesson’s learned from the extensive analysis of
the 164 publications presented in Section 4, we propose the Synthesis
Study Trustworthiness Test (SynTRUST ) as a principled framework to
evaluate medical image synthesis studies.

5.2. Proposing the SynTRUST framework

The Synthesis Study Trustworthiness Test (SynTRUST ) framework
consists of a principled set of measures to assess the trustworthiness
and validity of studies proposing generative models, synthetic data, or
adversarial training methods in medical and cancer imaging. It is based
on five core principles, namely,

(i) Thoroughness of experimental design and validation.
(ii) Reproducibility and transparency of results, data, models, and

implementation.
(iii) Usefulness and versatility of synthesis method, model, and gen-

erated data.
(iv) Scalability and transferability of the methodology and the results

across clinical domains.
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Table 7
Illustration of the SynTRUST Framework for evaluation of trustworthiness and validation vigour of studies that propose generative models, synthetic data, or adversarial training
in medical and cancer imaging. SynTRUST is based on the 5 core principles Thoroughness, Reproducibility, Usefulness, Scalability, and Tenability. For each overarching principle, a
et of concrete corresponding measures is defined. Each of the 26 SynTRUST measures is associated to an ID for reference and is assigned an importance rating, where 1 stands
or Essential, 2 for Desirable, and 3 for Recommended.
Principle ID Rating Definition

Thoroughness: Validity of experiments

Minimum test set size Th1 1 Representative test set size should allow confident conclusions (e.g., > 30 cases, > 100 images, ≥ 20% of training data).
Multi-metric reporting Th2 1 Multiple standardised metrics (e.g., FID, SSIM, downstream task metric) evaluate the synthesis method (e.g., ≥ 2).
Multiple result validation runs Th3 2 Mean & variance over multiple runs to be reported for all metrics (e.g., ≥ 3 random seeds, or ≥ 5-fold cross-validation).
Fair baseline comparison Th4 2 Fairest-possible comparison with closest-possible generative/adversarial/downstream task model baseline.
Principled benchmark
definition

Th5 2 Systematic construction of heterogeneous (patients, pathologies, acquisitions) test set(s), without data leaking.

Statistical significance testing Th6 3 Validation that reported performance variation & improvements are statistically significant.
Ablation study of ket
components

Th7 3 Testing removal of both downstream & generative model parts for insight on impact.

Effect of varying training set
sizes

Th8 3 Testing data scarcity impact by systematically reducing downstream and generative model training data.

Reproducibility: Transparency of study

Detailed reporting of design
decisions

R1 1 Study design & experiments are defined & reported with rationales and attention to detail.

Public availability of dataset R2 2 At least one reported evaluation dataset is publicly accessible allowing repetition of experiments.
Public availability of software
code

R3 2 Source code is shared in publicly accessible repository providing method implementation, ideally with documentation.

Public availability of model
weights

R4 3 Sharing of model weights for reusing the trained model for faster and sustainable reproducing of experiments.

Usefulness: Versatility of synthesis method

Synthesis method usability
testing

U1 1 Solid generative/adversarial model usefulness evaluation on at least one community-defined (downstream) clinical task.

Quantitative quality
measurement

U2 2 Assessment of synthetic data quality (e.g., via FID) or adversarial loss and their correlation with downstream task metrics.

Qualitative quality
measurement

U3 3 Observer study with clinicians to assess synthesis model output on realism, utility, quality, and diversity.

Mode collapse analysis U4 3 Diversity of generative model modes is analysed (e.g., via visual inspection and t-sne of synthetic & real distributions).

Scalability: Transferability of methodology

Real-world representing data S1 1 Evaluation on cases & samples highly representative of medically-relevant real-world clinical data.
Multi-dataset evaluation S2 2 Evaluation of generative model on multiple datasets/modalities demonstrating scalability, ideally for different organs.
Multi-centre evaluation S3 3 Evaluation of generative model per centre showing generalisability across centre-specific variations.
Multi-downstream task
evaluation

S4 3 Evaluate generative model versatility via test with multiple downstream models & tasks (e.g. segmentation, classification).

Downstream task robustness
evaluation

S5 3 Performance variation test for simulated train & test acquisition, manifestation, population, annotation, prevalence shifts.

Tenability: Acceptability of trained model

Condition adherence testing Te1 1 Test of preciseness & reliability of presence of (input) conditions in the (synthetic) data (e.g., via classification).
Bias awareness analysis Te2 2 Discussion & analysis how bias from dataset (e.g., age, gender, ethnicity, in/exclusion criteria) transfers into model.
Model hallucination tendency
analysis

Te3 3 Analysis of undesired removal/addition of features such as artifacts or tumours (e.g., via inspection or classification).

Fairness variation testing Te4 3 Change in fairness is measured for generative/adversarial model intervention (e.g., via equalised odds in downstream task).
Privacy preservation testing Te5 3 Investigation of patient-identifying feature leakage and training data reconstruction risk given generative model (output).
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(v) Tenability, acceptability, and reliability of the properties of the
model and respective synthetic data.

The methodology applied to derive the SynTRUST framework is
omposed of several consecutive steps, outlined as follows.

1. Observation of experimental evaluation methods in the surveyed
cancer imaging papers.

2. Questioning to which extent an observed study concludes with
a generally-applicable, scientifically-sound finding.

3. Definition of causes as to why the results of the study are limited
in general-applicability and trustworthiness.

4. Suggestion of additional validation methods that can increase
the study’s general-applicability.

5. Grouping and formalisation of suggestions into 26 concrete val-
idation measures.

6. Definition of an overarching principle for each group of mea-
sures resulting in the 5 core principles: Thoroughness,
Reproducibility, Usefulness, Scalability, and Tenability.

7. Refinement of the measures to complement with and extend on
expert consensus on best practices for the application of artificial
intelligence in medical imaging (Lekadir et al., 2021).
32

p

8. Importance rating of each measure from 1 to 3 based on their
estimated impact on trustworthiness. A rating of 1 indicates es-
sential measures with the highest importance, a rating of 2 char-
acterises desirable measures, and a rating of 3 depicts measures
that are recommended additions to a study.

The resulting SynTRUST framework is illustrated in Table 7. Table 7
ontains the title, the definition, the importance rating, and an ID for
eference for each of the 26 measures, grouped by the 5 SynTRUST
rinciples.

.3. Analysis of cancer imaging challenges using SynTRUST

.3.1. SynTRUST study curation
Towards the objective of evaluating the trustworthiness of cancer

maging solutions, we demonstrate in the following how the SynTRUST
ramework can be used to analyse medical imaging publications. This
ot only shows the practicability of the SynTRUST framework, but also
stimates the trustworthiness of current results in the field. The latter
llows to corroborate concrete quality-controlled conclusions about the
rogress and state-of-the-art in adversarial networks in cancer imaging.
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Table 8
Selection of studies that employ data synthesis and adversarial networks methodology curated based on their promising
potential towards solving the cancer imaging challenges surveyed in Sections 4.1–4.5. Each of the studies represents one
concrete proposed solution to one of the challenges.

Cancer imaging challenge Proposed solution Representative study

Imbalanced/biased data (4.1.2) Adversarially-trained bias-free representations Li et al. (2021a)
Dataset shifts (4.1.3) Multi-modal image translation Yurt et al. (2019)
Uncertain synthetic data usability (4.1.4) Feature hallucination evaluation metric Cohen et al. (2018b,a)
Uncurated data (4.1.5) Generative image correction & denoising model Armanious et al. (2020)
Privacy risks in data sharing (4.2.1) Federated (differentially-private) image synthesis Chang et al. (2020b,a)
Adversarial attacks and defences (4.2.5) Adversarial example-based augmentation Liu et al. (2020b)
Costly human annotation (4.3.1) Uncertainty-aware annotation generation Hu et al. (2020)
Weak domain generalisation (4.3.2) Adversarially-trained cross-domain segmentation Kamnitsas et al. (2017)
Extracted feature variation (4.3.2) Discriminator learning radiomics correlations Xiao et al. (2019)
Intra/inter-observer variability (4.3.2) Observer averaging via mask discriminator Sarker et al. (2019)
Radiologists’ high error rate (4.4.1) Detection improving synthetic data augmentation Zhao et al. (2020a)
Intra/inter-tumour heterogeneity (4.4.2) Adversarially-trained anomaly detection Kuang et al. (2020)
Uncertain tumour profiles (4.5.1) Adversarially-trained representation comparison Quiros et al. (2019)
Unknown treatment response (4.5.2) Semi-supervised treatment biomarker quantification Kapil et al. (2018)
Unknown treatment dose (4.5.2) Synthesis of volumetric dosimetry images Kearney et al. (2020a)
Uncertain disease progression (4.5.3) Tumour progression image generation Elazab et al. (2020)
Table 9
Results of the in-depth analysis of all essential and desirable measures of the SynTRUST framework for studies proposing adversarial network methodology. The analysed studies are
elected in Table 8 and represent solutions to key cancer imaging challenges. The SynTRUST measures are referenced by ID from Table 7. The blue check mark symbol indicates
positive evaluation, while the red and orange cross symbols respectively indicate a negative evaluation of an essential or desirable measure. The evaluated essential measures are
inimum test set size (Th1), multi-metric reporting (Th2), detailed reporting of design decisions (R1), synthesis method usability testing (U1), real-world representing data (S1), condition
dherence testing (Te1). The evaluated desirable measures are multiple result validation runs (Th3), fair baseline comparison (Th4), principled benchmark definition (Th5), public availability
f dataset (R2), public availability of software code (R3), quantitative quality measurement (U2), multi-dataset evaluation (S2), bias awareness analysis (Te2).
Representative study SynTRUST framework

1: Essential measures 2: Desirable measures

Th1 Th2 R1 U1 S1 Te1 Th3 Th4 Th5 R2 R3 U2 S2 Te2

Li et al. (2021a) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✘ ✔

Yurt et al. (2019) ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✘ ✔ ✘

Cohen et al. (2018b,a) ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✔ ✔ ✘ ✘

Armanious et al. (2020) ✘ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✘ ✔ ✔ ✘

Chang et al. (2020b,a) ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✔ ✘ ✔ ✘

Liu et al. (2020b) ✔ ✘ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✘ ✘ ✔ ✘

Hu et al. (2020) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✔ ✘

Kamnitsas et al. (2017) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✘

Xiao et al. (2019) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘

Sarker et al. (2019) ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✘ ✘ ✔ ✘

Zhao et al. (2020a) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘

Kuang et al. (2020) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘

Quiros et al. (2019) ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✘

Kapil et al. (2018) ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘

Kearney et al. (2020a) ✘ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✘

Elazab et al. (2020) ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✔ ✘
t
w
3
i

In our analysis we first sample the present-day challenges in cancer
maging that were surveyed in Section 4 and summarised in Fig. 1.
ext, we carefully select representative adversarial network publica-

ions to represent a particular challenge and its solution. This selection
s based on the criteria that the publication (a) proposes a particu-
arly promising solution to its respective challenge, (b) contributes a
ethodology that is generally-applicable across domains and (c) report
romising results. Most of the sampled publications further (d) have
hown more impact and were referenced in other relevant studies.
he selected studies are displayed in Table 8 together with their
epresentative solution and associated cancer imaging challenge.

.3.2. SynTRUST study assessment
Next, we analyse each of the selected publications independently

ased on the SynTRUST framework. We choose to base our analysis
on the most important measures of the SynTRUST framework that, as
shown in Table 7, have received either a rating of 1 as essential or

rating of 2 as desirable. For the sake of conciseness, we leave the
nalysis of less critical measures rated as 3 (recommended) to further
tudies. The results of our analysis of each of the selected publications
33

re summarised in Table 9.
Essential SynTRUST measures. We observe that the analysed studies
overall show strong trustworthiness and validity considering the essen-
ial measures: 11 out of 16 studies fulfil all of the essential criteria,
hile the remaining 5 studies fulfil all but one essential measures. For
out of these 5 studies, the only essential measure that is not fulfilled

s Th1 (minimum test set size). For instance, studies that pioneer method-
ologies on promising new clinical applications, such as generative
tumour progression modelling (Elazab et al., 2020), it is particularly
challenging to encounter datasets suitable for the clinical task at hand.
Even though the number of test images exceeds the defined minimum
of 100 in these studies, the number of different patients (cases) is
lower than 30. 30 was defined as the indicative minimum of cases
to allow for conclusions for the larger patient population.32 All 16
studies have a detailed reporting of design decisions (R1), train and test
on real-world representing clinical data (S1), and test the conditions
of their adversarial network (Te1). Also, 15 out of 16 studies report
multiple standardised performance metrics to evaluate the adversarial
network (Th2) and demonstrate their method’s usefulness on a clini-
cally relevant downstream task (U1). In sum, the result for the essential

32 Based on the central limit theorem, 30 is a popular choice and
rule-of-thumb for the minimum sample size of a population.
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measures demonstrates that the reported performance and progress of
the analysed studies are considerably reliable and trustworthy.

Desirable SynTRUST measures. While the 6 essential basic trustwor-
thiness requirements are mostly fulfilled, the result for the 8 desirable

easures is more varied. This highlights that the studies have a general
igh level of trustworthiness, but a lower level of trustworthiness
or the more specific and nuanced aspects of their reported results
nd validations. For instance, while 15 out of 16 studies included a
omparison with a suitable baseline (Th4), multiple studies did not
ccomplish a positive evaluation of Th3 (8), Th5 (9), R2 (7), R3 (11),
2 (11), S2 (7), and Te2 (15).

• Regarding Th3, often studies defined a static train and test set
without running experiments multiple times. For example, multi-
ple different random seed network weight initialisations or k-fold
cross-validation are options to corroborate results by demon-
strating stable performance with reported mean and standard
deviation across runs/folds.

• Regarding Th5, in general the train-test split ensured no data
leaking between training and testing sets, e.g., with images from
the same patient not being in both sets. However, the benchmark
test sets were often not defined systematically to ensure validating
the methods on a varied distribution of, e.g., cases, patients,
pathologies, and acquisition parameters.

• For R2, we observe that often the studies’ datasets are not public
available, which limits the reproducibility of the results. Often,
this is due to the collection and usage of private patient data
from hospitals. Further limiting factors are the high effort to
repeat the study on public datasets or the specificity of the clinical
task rendering its evaluation non-viable on the available public
datasets.

• Analysing R3 shows that the software implementing the studies’
methods and experiments is often not shared publicly in code
repositories, which reduces reproducibility and impedes rerun-
ning experiments with exactly the same code base used in the
respective study.

• Regarding U2, often the correlation between (a) the downstream
tasks and (b) either the synthetic data quality (e.g., in the case
of generative models) or the adversarial loss (e.g. in the case of
adversarial training) is not analysed. Such an analysis informs on
the usefulness of the quality of the respective model and on its
contribution to the results on the clinical task.

• As to S2, often the method is validated on, both, (a) a sin-
gle dataset and (b) a single modality, while a desirable eval-
uation would use multiple datasets, modalities, ideally further
demonstrating the method’s transferability across organs, clinical
domains and acquisition protocols.

• For Te2, we note the general absence of an analysis of the bias
that is transferred from the training dataset into the models. For
instance, a model trained on a homogeneous patient population
sample, e.g., in terms of gender, sex, ethnicity, geography, likely
is biased towards this subset of the overall population and can
result in unequal treatment of patients from other subsets. Model
biases can be detected by reviewing (a) the dataset statistics, (b)
the model performance shifts on carefully subset patient sam-
ples, and (c) the exclusion and inclusion criteria applied in the
data acquisition and curation processes. This enables to report
and potentially mitigate otherwise unknown model biases, which
increases the knowledge and reliability of a model’s properties.

In concluding our meta-analysis, we highlight the high general
evel of trustworthiness of the selected adversarial network publica-
ions based on our assessment of the essential SynTRUST measures.

This demonstrates technical maturity of adversarial training and image
synthesis methods in cancer imaging. As described in the Sections 4.1–
4.5, many approaches towards solving the challenges in cancer imaging
34
are not yet fully explored. Nonetheless, the solutions that have been
pioneered and validated are shown to be relatively trustworthy and
solid.

However, our meta-analysis also revealed that specific desirable
rustworthiness criteria that go beyond basic essential validation are
ften not fulfilled, even by the most promising and in-depth studies
n the field. For instance, a wider practice of data and code sharing is
esirable. Closing this gap will not only increase reproducibility, but
lso accelerate adoption of existing methods and further innovation.
art from that, the validation of biases and fairness criteria in datasets
nd models is largely overlooked despite its importance to ensure a
odel’s acceptability and trust in the clinical setting.

We motivate further studies to address and build upon the gaps our
nalysis has revealed regarding the trustworthiness of existing cancer
maging studies. In this regard, we highlight the SynTRUST framework
ot only as a means for study evaluation, but also as a guideline guiding
he design of future image synthesis studies.

. Discussion and future perspectives

.1. Adversarial methods in cancer imaging over the years

As presented in Fig. 15(c), we have included 164 of the surveyed
AN-based data synthesis and adversarial training publications in the

imeframe from 2017 until March 7th 2021. We observe that the
umbers of these cancer imaging GAN publications has been increasing
rom 2017 to 2020 from 10 to 63 with a surprising slight drop between
018 to 2019 (41 to 38). The final number of respective publications for
021 is still pending. The trend towards publications that propose GANs
nd adversarial training to solve cancer imaging challenges demon-
trates the considerable research attention that the adversarial learning
cheme has been receiving in this field. Following our literature review
n Section 4, the need for further research in adversarial networks
eems not yet to be met. We were able to highlight various lines of
esearch for GANs and adversarial training in oncology, radiology,
nd pathology that have received limited research attention or are
ntapped research potentials. These potentials indicate a continuation
f the trend towards more data synthesis and adversarial training
pplications and standardised integration of GAN-generated synthetic
ata into medical image analysis pipelines and software solutions.

.2. Modality biases

In regard to imaging modalities, we analyse in Fig. 15(b) how much
esearch attention each modality has received in terms of the number of
orresponding publications. By far, MRI and CT are the most dominant
odalities with 61, and 53 publications, respectively, followed by MMG

13), dermoscopy (12) and PET (6). The wide spread between MRI and
T and less investigated domains such as endoscopy (3), ultrasound
3), and digital tomosynthesis (0) is to be critically remarked. Due to
ariations in the imaging data between these modalities (e.g., spatial
esolutions, pixel dimensions, domain shifts), it cannot be readily as-
umed that a GAN application with desirable results in one modality
ill produce equally desirable results in another. Due to that and with
wareness of the clinical importance of MRI and CT, we suggest a
ore balanced application of GANs and adversarial training across
odalities including experiments on rare modalities to demonstrate the

linical versatility and applicability of GAN-based solutions. Alongside
he open-access datasets described by Diaz et al. (2021), we highlight
he following additional recent open datasets to facilitate experiments
n some of the cancer imaging modalities that we found to be less
xplored:

• Breast tomosynthesis: BCS-DBT (Buda et al., 2021)
• PET-CT: Lung-PET-CT-Dx (Li et al., 2020b)
• Endoscopy: HyperKvasir (Borgli et al., 2020)
• Dermatology: HAM10000 (Tschandl et al., 2018)
• Cytology: CERVIX93 (Phoulady and Mouton, 2018)
• Thoracic X-ray: Node21 (Sogancioglu et al., 2021)
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Fig. 15. Histograms showing the distribution of the 164 analysed GAN publications in this paper by (a) cancer imaging challenge category, (b) imaging modality, (c) year of
publication, and (d) anatomy/organ. These numbers are retrieved exclusively from the information in Tables 2–6 of the respective Sections 4.1–4.5. Note that (b) and (d) contain
more publications in total than (a) and (c), which is caused by GAN publications that evaluate on (and are assigned to) more than one modality (b) and/or anatomy (d) due to
multiple experiments or cross-domain translation. In (c), the count for 2021 is not final, as the GAN papers herein analysed have been published on or before 7th March 2021.
6.3. Anatomy biases

In comparison, the GAN-based solutions per anatomy are more
evenly spread, but still show a clear trend towards brain, head, neck
(50), lung, chest, thorax (33) and breast (24). We suspect these spreads
are due to the availability of few well-known widely-used curated
benchmark datasets (Menze et al., 2014; Armato III et al., 2011; Heath
et al., 2001; Moreira et al., 2012) resulting in underexposure of organs
and modalities with less publicly available data resources. Where pos-
sible, we recommend evaluating GAN-based data synthesis and adver-
sarial training on a range of different tasks and organs. This can avoid
iterating towards non-transferable solutions tuned for specific datasets
with limited generalisation capabilities. Said generalisation capabilities
are critical for beneficial usage in clinical environments where dynamic
data processing requirements and dataset shifts (e.g., multi-vendor,
multi-scanner, multi-modal, multi-organ, multi-centre) commonly exist.

6.4. Cancer imaging challenge category biases

Fig. 15(a) displays the distribution of GAN publications across
cancer imaging challenge categories that correspond to the subsec-
tions of Section 4. While the Sections 4.4 detection and diagnosis
(54) and 4.4 data annotation and segmentation (42), and 4.1 data
scarcity and usability (38) have received much research attention,
Sections 4.5 treatment and monitoring (18) and 4.2 data access and
privacy (12) contain substantially less GAN-related publications. This
spread can be anticipated considering that classification and segmen-
tation are popular computer vision problems and common objectives
in publicly available medical imaging benchmark datasets. Early de-
tected cancerous cells likely have had less time to acquire malignant
genetic mutations (Hanahan and Weinberg, 2000, 2011) than their
latter detected counterparts, which, by then, might have acquired more
treatment-resistant alterations and subclone cell populations. Hence,
automated early detection, location and diagnosis can provide high
clinical impact via improved cancer treatment prospects, which likely
influences the trend towards detection and segmentation-related GAN
publications.
35
6.5. Well-validated adversarial network solutions

Our survey uncovers in Sections 4.1, 4.3, and 4.4 that a vast amount
of cancer imaging literature exists around a few common adversarial
network solutions.

The most common application of GANs is data augmentation, where
synthetic data is added to the training dataset to yield an improved
downstream task performance. Such data augmentation can be further
used to balance imbalanced datasets, which, for instance, often include
much more benign tumour images than malignant ones.

A further well-explored application of GANs is domain adaptation
via adversarial training, where a domain-adversarial loss is backprop-
agated into a downstream task model. Domain mapping is a related
application, where images are translated from one domain to another.
In general, GANs learn to translate between one source and one target
domain. However, promising work has extended this technique to
cross-modal synthesis between multiple domains (Yurt et al., 2019; Li
et al., 2019a; Zhou et al., 2020), which remains an area with much
clinically-relevant research potential. Similarly, GANs for super resolu-
tion and data curation including artifact removal and image denoising
achieve desirable performance and real-world applicability.

Image-to-image translating GANs can remove or hallucinate features
such as tumours (Cohen et al., 2018b,a) into generated images. While
this can be a major concern for clinical adoption, it also opens an
avenue for future research into automated detection and assessment
of removed or hallucinated features and sheds light on the need for
additional metrics for GAN condition-adherence and synthetic data
evaluation.

Furthermore, we observe that the discriminator and its associated
adversarial loss can be flexibly used to classify any type of model
output without necessarily following the purpose of data generation.
For example, discriminator can predict whether a segmentation mask
is real or created by a segmentation model, which enables the model
to learn to output more globally coherent segmentation masks.

6.6. New solutions for unexploited areas

Patient privacy. We promote future work on the less researched open
challenges in Section 4.2, where we describe the promising research
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potential of adversarial networks in patient data privacy and security.
We note that secure patient data is required for legal and ethical
patient data sharing and usage, which, on the other hand, is required
for successful training of state-of-the-art downstream task models. For
instance, sharing GANs instead of private patient data can reduce data
sharing constraints, while maintaining data utility (Szafranowska et al.,
2022). Furthermore, GANs can be trained both in a federated learning
setup as well as in a differential-privacy setup. Both of these techniques
can be combined to further reduce privacy risks such as the risk of gen-
erating synthetic imaging data attributable to a specific patient. Further
unexploited research potential lies in adversarial identity obfuscation
both on image level, as well as on latent feature representation level.
In particular, devising privacy preservation testing methods to evaluate
the success of adversarial identity obfuscation and related methods is
a needed and not fully addressed research problem in cancer imaging
and AI in healthcare at large.

Patient security. With the projected increase in clinical AI applica-
ions, adversarial learning based cybersecurity methodology becomes
ncreasingly important to protect patients against the vulnerabilities
nherent in clinically deployed deep learning solutions. Attacks can
lter diagnostic markers on cancer imaging data, which can potentially
esult in diagnostic errors with dangerous consequences for the tar-
eted patients. For instance, defences against adversarial examples (Liu
t al., 2020b; Samangouei et al., 2018) or detection of imaging data
hat has been tampered with Mirsky et al. (2019) are areas where
olutions based on adversarial methods will increasingly gain practical
mportance.

Model debiasing. The versatile ability of adversarial training to curate
model’s latent space is likely to continue to increase in popularity

ue to the need to remove certain features in clinical AI models. For
xample, it is desirable to minimise a model’s learned biases to increase
he fairness of clinical models across patient populations (Lekadir et al.,
021). Such bias removal has been shown to be achievable via ad-
ersarial loss backpropagation (Zhang et al., 2018a; Li et al., 2021a).
s Elazar and Goldberg (2018) point out, some residual biases may
emain in a model’s latent space after converged adversarial bias re-
oval training. Therefore, research potential lies in automated test

nd evaluation methodology to assess the quantity of residual bias
emaining in an adversarial networks after debiasing, particularly if
pplied to data unseen during training.

Generative model evaluation. A key aspect this survey observes is the
bsence of interpretable, standardised and exact evaluation methodol-
gy for synthetic data and generative models in the medical and cancer
maging domains. This is particularly noticeable for models without
narrow downstream task performance objective that can be used as

urrogate evaluation metric nor a reconstruction objective that informs
he evaluation technique. Generative models that generate a synthetic
mage with a clear reference value (i.e., a real image) can be evalu-
ted based on the difference between reference and generated sample,
.g., via perceptual and reconstruction losses and metrics such as SSIM,
SNR, MSE, as discussed in Section 4.1. In the absence of such reference
mages, remaining methods at hand are image inspection techniques
nd real versus synthetic distribution comparisons, the latter including
he Fréchet Inception Distance (FID) score (Heusel et al., 2017). The
opularity of the FID metric for fidelity and diversity evaluation of
ynthetic data has largely translated from computer vision into medical
maging. The applicability of FID in the medical domain, nonetheless, is
uestionable, as it internally relies on an inception classifier pretrained
n the ImageNet dataset consisting of 3-channel natural images as
pposed to, for instance, grayscale images from radiological domains.
his demonstrates a clear need for research on further evaluation
ethodologies of synthetic medical images. FID extensions that pre-

rain the internal classifier on medical imaging datasets are potential
36

irections, but limited by the acquisition techniques, scope, modalities,
and, importantly, the size of these medical imaging datasets. Recent
promising work proposed the automated generation of segmentation
mask from GANs based on latent space exploration (Melas-Kyriazi
et al., 2021). Such latent space inspection approaches can offer further
potential for generative model evaluation, e.g., by helping to measure
the number and difference between modes or by providing quality and
diversity estimates of the segmentation masks (or other extractable
pieces of information) that the model produces.

Patient treatment. Sections 4.3 and 4.4 have shown that adversar-
ial models for cancer detection, classification, and localisation are,
at least for particular organs and modalities, well explored research
areas. These applications are mostly relevant in diagnostic activities,
which comprise only one part of the clinical workflow. We encourage
more research on GAN-based solutions in less explored subsequent
clinical workflow steps such as oncological treatment planning and dis-
ease monitoring as elaborated in Section 4.5. For example, adversarial
learning offers research potential in tumour profiling and intra- and
inter-tumour heterogeneity assessment via anomaly detection within
the latent space of adversarial models (Schlegl et al., 2019; Quiros
et al., 2019). The high intra- and inter-tumour heterogeneity increases
the difficulty of assessing and selecting targeted treatment options.
Research potential exists in precisely encoding a tumour based on
imaging and/or non-imaging patient and tumour data in an adver-
sarial model’s multi-dimensional latent space. For example, this can
unlock vector search applications to find similarly encoded tumours
in databases to inform on therapy selection, success probabilities, and
progression patterns. Tumour progression modelling on image-level
based on generative models such as GANs remains largely unexplored.
Even though not strictly necessary (Xia et al., 2021), longitudinal
and time-series cancer imaging datasets will likely trigger increased
exploration of this research area once such data becomes available.
For instance, given a tumour image at timepoint t1, a GAN can learn
to simulate the tumour image at timepoint t2. To this end, generation
of image-level counterfactuals (Pawlowski et al., 2020) as a clinically
impactful solution for probing interventions. For instance, GANs can
generate a tumour at t2 given the tumour image at t1 alongside multiple
input conditions such as tumour growth rate, tumour type, and applied
treatments.

6.7. Future perspectives and technology trends

6.7.1. Towards state-of-the-art GAN innovations in cancer imaging
In recent years, multiple novel adversarial networks have been

introduced in the field of computer vision. A lesson learned from our
survey is that many of these techniques are yet to be applied thor-
oughly to cancer imaging. These innovations open avenues in cancer
imaging that extend upon the currently used methods shown in Fig. 4,
for instance, enabling improved high-resolution image generation and
input-conditioned image synthesis.

Overcoming dataset and computation limitations. For instance, the recent
VQGAN (Esser et al., 2021) combines the efficiency of convolutional
networks with the expressiveness of transformers, which model the
composition of a reusable codebook of context-rich visual parts. This
approach is particularly relevant to medical and cancer imaging, as it
allows high-resolution image synthesis despite limited computing re-
sources. Apart from containing high resolution images, cancer imaging
datasets are often limited in the number of image, which may not
suffice to train a GAN. In these cases, the potential issues are that during
training there is convergence-failure, where the synthetic image quality
is low and does not improve any further during training. While the ad-
versarial loss often is non-interpretable not corresponding to synthetic
image fidelity, diversity or condition adherence, also mode collapse
may occur, where the generator has learned a particular mode to fool
the discriminator instead of generating a high diversity of samples.

These issues are not only a function of the GAN architecture and loss



Medical Image Analysis 84 (2023) 102704R. Osuala et al.

c
e
N
R
h
a
b
f
v
a
b
r
e
r
e
a

6

s
i
a
t

h
a
w
o
G
o
a
t
t
m
e
e
s
i

a
d
g
F
t
b
e
G
o
t
l
i
p
v
e
2

s
a
(
e
t
D
d
f
t
B

t
s
i
w
d
s
n
t
l
p

function, but also of the size of the training dataset. FastGAN (Liu
et al., 2020a) and SinGAN (Shaham et al., 2019) shows great promise
to overcome this data scarcity cancer imaging problem. FastGAN (Liu
et al., 2020a) uses self-supervised training of discriminator as encoder
for regularisation and generates high-resolution images despite limited
computing resources and dataset size. SinGAN (Shaham et al., 2019)
generates multiple synthetic images based on only a single training
image. This has wide applicability and can substantially increase the
usefulness of even very small cancer imaging datasets via SinGAN-
based data augmentation. A first successful applications of SinGAN and
FastGAN to cancer imaging for polyp segmentation by Thambawita
et al. (2022) shows the potential of using these models to generate
not only a synthetic images, but also a corresponding segmentation
mask by outputting an additional channel. This type of methodology
enables training data generation for tumour detection, localisation and
segmentation models without the need of conditioning the GAN on
input segmentation masks.

Best practice combining GAN frameworks. As a vast amount of novel ad-
ditions to the GANs framework has been suggested, some work (Brock
et al., 2018) has focused on collecting the best working practices and
combining them into novel architectures, which are promising and
not yet widely applied to challenges in cancer imaging. For example,
BigGAN (Brock et al., 2018) (a) scales model parameters by increasing
the size of the feature maps, (b) applies large batch sizes, (c) uses
self-attention based on SAGAN (Zhang et al., 2019a), (d) provides in-
formation about the class via class-conditional batch normalisation, and
(e) uses hinge-loss. BigGAN and extensions thereof (e.g., Zhang et al.
(2019b), Casanova et al. (2021) and Schonfeld et al. (2020)) achieve
state-of-the-art performance on class-conditional image generation.

Extending on PGGAN (Karras et al., 2017) as shown in Fig. 4(m),
another such example is StyleGAN (Karras et al., 2019) and its vari-
ants (Karras et al., 2021, 2020; Sauer et al., 2022), which accomplish
state-of-the-art performance in conditional and unconditional computer
vision image generation benchmarks. Yielding strong results, multiple
architectural innovations have been introduced by the StyleGAN fam-
ily, such as a style vector generating fully connected mapping network,
adaptive instance normalisation, and, instead of sampling from a noise
vector, moving the noise input to intermediate activation maps. These
innovations can inform cancer image generation models and improve
their latent space exploration capabilities e.g. allowing to compare
different tumour types and manifestations.

Image-to-image translation. Image-to-image translation problems in
ancer imaging are widely approached using commonly pix2pix (Isola
t al., 2017) (paired) and cycleGAN (Zhu et al., 2017) (unpaired).
onetheless, more recent models such as OASIS (Sushko et al., 2020),
esVit (Dalmaz et al., 2021), and StarGAN V2 (Choi et al., 2020)
ave been proposed, which are not only applicable to cancer im-
gery, but also have shown superior performance on computer vision
enchmarks. ResVit (Dalmaz et al., 2021), for instance, diverges away
rom common CNN architectures with inductive biases by using a
ision transformer architecture (Dosovitskiy et al., 2020) alongside an
dversarial loss (Goodfellow et al., 2014) and the common L1 losses
etween source and target (Isola et al., 2017) and between source and
econstructed source (Zhu et al., 2017). StarGAN V2 (Choi et al., 2020)
mploys besides the adversarial and cycle consistency losses also a style
econstruction loss and a style diversification loss, while OASIS (Sushko
t al., 2020) shows that a perceptual loss is not necessary given an
dversarial loss and a segmentation-based discriminator.

.7.2. GAN alternatives and complementary methods
Diffusion models. In image inpainting (Saharia et al., 2021a) and
uper resolution (Saharia et al., 2021b), the recently proposed and
ncreasingly popular diffusion models (Sohl-Dickstein et al., 2015; Song
nd Ermon, 2019; Ho et al., 2020) have been shown to achieve state-of-
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he-art and competitive performances for computer vision benchmarks
and, thus, are an alternative to GANs. Diffusion models iteratively add
noise to an image in a Markov chain of diffusion steps. Reversing this
process, a noise vector z is gradually denoised and transformed into
an image. While achieving promising generative modelling capabilities,
it still takes longer to sample from diffusion models than from GANs
due to multiple denoising steps, while also further work is needed
to explore the interpretability of latent representations of diffusion
models (Dhariwal and Nichol, 2021). A promising line of research
suggests the combination of GANs with diffusion models to increase
the stability and data efficiency of GAN training (Wang et al., 2022).

Variational autoencoders. GANs are commonly considered to achieve
igher quality outputs than variational autoencoders (VAEs) (Kingma
nd Welling, 2013) at the cost of a training process more prone to-
ards requiring manual intervention and tuning. A promising line
f research improves upon vanilla VAE by exploring combinations of
ANs and VAEs (Larsen et al., 2016; Makhzani et al., 2015). Extending
n VAEs, Van Den Oord et al. (2017) proposed Vector Quantised Vari-
tional AutoEncoder (VQ-VAE), which learns discrete instead of con-
inuous latent representations to avoid the issue of ‘posterior collapse’
hat is common in VAEs. VQ-VAE has been shown to be an effective
ethod for diverse high-quality synthetic image generation (Razavi

t al., 2019). A promising extension combines VQ-VAE with transform-
rs (Vaswani et al., 2017) for unsupervised anomaly detection and
egmentation and demonstrates its potential for tumour segmentation
n brain MRI (Pinaya et al., 2021).

Normalizing flows. The recently proposed Normalizing Flows (Rezende
nd Mohamed, 2015; Dinh et al., 2014, 2016) are an alternative
eep generative model gaining increasing popularity for synthetic data
eneration tasks. As opposed to GANs and VAEs (implicit), Normalizing
lows explicitly learn the probability density function 𝑝(𝑥) and are
rained via maximum likelihood estimation. Knowing 𝑝(𝑥), unobserved
ut realistic new data points can be sampled with exact likelihood
stimates. Normalizing Flows have been shown to be combinable with
ANs and the adversarial loss function, e.g., by being the building block
f the generator network (Grover et al., 2018), and for image-to-image
ranslation (Grover et al., 2020). To date, Normalizing Flows have seen
ess adoption in medical and cancer imaging than GANs, but promising
nitial applications exist. For example, Normalizing Flows have been
roposed for uncertainty estimation of lung lesion segmentation (Sel-
an et al., 2020), counterfactual inference on brain MRI (Pawlowski
t al., 2020), and low-dose CT image reconstruction (Denker et al.,
020).

Unsupervised domain adaptation. In unsupervised domain adaptation,
elf-training approaches are described as an alternative to domain
dversarial losses. For example, state-of-the-art methods like HRDA
Hoyer et al., 2022b) and DaFormer (Hoyer et al., 2022a) show the
ffectiveness of self-training in domain-adaptive semantic segmenta-
ion. DaFormer uses a transformer encoder (Vaswani et al., 2017;
osovitskiy et al., 2020) and transfers knowledge from source to target
omain via a teacher network that generates pseudo-labels for the data
rom the target domain. A promising avenue of research combines self-
raining approaches and adversarial losses (Li et al., 2019c; Kim and
yun, 2020; Wang et al., 2020a).

Self-supervised learning. Given successes in learning useful representa-
ions from unlabelled data, self-supervised learning (SSL) approaches,
uch as BYOL (Grill et al., 2020), have become a common technique
n the toolkit of deep learning researchers. Particularly when working
ith datasets limited in size or annotations, additional GAN-generated
ata can improve the learning of representations, upon which a down-
tream task model produces its predictions. SSL can provide an alter-
ative, often computationally less expensive, means towards represen-
ation learning given a training task with objective function, where
abels 𝑦 and inputs 𝑥 are extracted from an unlabelled dataset. A
opular and powerful SSL method is contrastive learning, where a
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model’s latent space is learned by minimising the distance of similar
samples and maximising the distance between dissimilar ones. Effective
model pretraining methods such as SimCLR (Chen et al., 2020b) rely
on such contrastive loss functions, which, e.g., maximise agreement be-
tween differently augmented views of the same image. Multiple recent
studies propose the combination of GANs and self-supervised (Patel
et al., 2021) and contrastive learning with promising results reporting
improved performance and sample diversity, as well as reduced dis-
criminator overfitting (Jeong and Shin, 2021; Kang and Park, 2020;
Liu et al., 2021). In cancer imaging, for instance, this combination has
been applied to address the problem of mode collapse while retaining
phenotypic tumour features for the task of colour normalisation in
histopathology images (Ke et al., 2021).

7. Conclusion

In closing, we emphasise the versatility and the resulting modality-
independent wide applicability of the adversarial learning scheme of
GANs. In this survey, we strive to consider and communicate this
versatility by describing the wide variety of problems in the can-
cer imaging domain that can be approached with adversarial net-
works. For example, we highlight GAN and adversarial training so-
lutions that range from unsupervised domain adaptation to patient
privacy preserving distributed data synthesis, to adversarial segmen-
tation mask discrimination, to multi-modal radiation dose estimation,
amongst others.

Before reviewing and describing GAN and adversarial training solu-
tions, we surveyed the literature to understand the current challenges
in the field of cancer imaging with a focus on radiology, but without
excluding non-radiology modalities common to cancer imaging. After
screening and analysing the cancer imaging challenges, we grouped
them into the challenge categories Data Scarcity and Usability, Data
Access and Privacy, Data Annotation and Segmentation, Detection
and Diagnosis, and Treatment and Monitoring. After categorisation,
we surveyed the literature for adversarial networks applied to the
field of cancer imaging and found 164 relevant publications, each of
which we assigned to its respective cancer imaging challenge category.
Finally, we provide a comprehensive analysis for each challenge and
its assigned GAN-related publications to determine to what extent it
has and can be solved using GANs and adversarial training. We further
establish the SynTRUST framework for assessing the trustworthiness of
medical image synthesis studies. Based on SynTRUST, we analyse 16
carefully selected cancer imaging challenge solutions. Notwithstanding
the overall high level of rigour and validity of these studies, we are
able to recommend a set of unaddressed trustworthiness improvements
in order to guide future studies. To this end, we also highlight research
potential for challenges where we were able to propose data synthesis
or adversarial training solutions that have not yet been fully explored
by the literature.

With our work, we strive to uncover and motivate promising lines
of research in data synthesis and adversarial networks that we envision
to ultimately benefit the field of cancer imaging in clinical practice.
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